976 resultados para fibroblast growth factor 10


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the efficacy and safety of intramuscular administration of NV1FGF, a plasmid-based angiogenic gene delivery system for local expression of fibroblast growth factor 1 (FGF-1), versus placebo, in patients with critical limb ischemia (CLI). In a double-blind, randomized, placebo-controlled, European, multinational study, 125 patients in whom revascularization was not considered to be a suitable option, presenting with nonhealing ulcer(s), were randomized to receive eight intramuscular injections of placebo or 2.5 ml of NV1FGF at 0.2 mg/ml on days 1, 15, 30, and 45 (total 16 mg: 4 x 4 mg). The primary end point was occurrence of complete healing of at least one ulcer in the treated limb at week 25. Secondary end points included ankle brachial index (ABI), amputation, and death. There were 107 patients eligible for evaluation. Improvements in ulcer healing were similar for use of NV1FGF (19.6%) and placebo (14.3%; P = 0.514). However, the use of NV1FGF significantly reduced (by twofold) the risk of all amputations [hazard ratio (HR) 0.498; P = 0.015] and major amputations (HR 0.371; P = 0.015). Furthermore, there was a trend for reduced risk of death with the use of NV1FGF (HR 0.460; P = 0.105). The adverse event incidence was high, and similar between the groups. In patients with CLI, plasmid-based NV1FGF gene transfer was well tolerated, and resulted in a significantly reduced risk of major amputation when compared with placebo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor receptor-like 1 (FGFRL1) is a recently discovered transmembrane protein whose functions remain unclear. Since mutations in the related receptors FGFR1-3 cause skeletal malformations, DNA samples from 55 patients suffering from congenital skeletal malformations and 109 controls were searched for mutations in FGFRL1. One patient was identified harboring a frameshift mutation in the intracellular domain of this novel receptor. The patient showed craniosynostosis, radio-ulnar synostosis and genital abnormalities and had previously been diagnosed with Antley-Bixler syndrome. The effect of the FGFRL1 mutation was studied in vitro. In a reporter gene assay, the wild-type as well as the mutant receptor inhibited FGF signaling. However, the mutant protein differed from the wild-type protein in its subcellular localization. Mutant FGFRL1 was mainly found at the plasma membrane where it interacted with FGF ligands, while the wild-type protein was preferentially located in vesicular structures and the Golgi complex. Two motifs from the intracellular domain of FGFRL1 appeared to be responsible for this differential distribution, a tandem tyrosine based motif and a histidine-rich sequence. Deletion of either one led to the preferential redistribution of FGFRL1 to the plasma membrane. It is therefore likely that mutant FGFRL1 contributes to the skeletal malformations of the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor (FGF) receptor family. Utilizing the FRET (fluorescence resonance energy transfer) technique, we demonstrate that FGFRL1 forms constitutive homodimers at cell surfaces. The formation of homodimers was verified by co-precipitation of differentially tagged FGFRL1 polypeptides from solution. If overexpressed in cultivated cells, FGFRL1 was found to be enriched at cell-cell contact sites. The extracellular domain of recombinant FGFRL1 promoted cell adhesion, but not cell spreading, when coated on plastic surfaces. Adhesion was mediated by heparan sulfate glycosaminoglycans located at the cell surface. It could specifically be blocked by addition of soluble heparin but not by addition of other glycosaminoglycans. When the amino acid sequence of the putative heparin-binding site was modified by in vitro mutagenesis, the resulting protein exhibited decreased affinity for heparin and reduced activity in the cell-binding assay. Moreover, a synthetic peptide corresponding to the heparin-binding site was able to neutralize the effect of heparin. With its dimeric structure and its adhesion promoting properties, FGFRL1 resembles the nectins, a family of cell adhesion molecules found at cell-cell junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Angiogenesis is known to be a critical and closely regulated step during bone formation and fracture healing driven by a complex interaction of various cytokines. Delays in bone healing or even nonunion might therefore be associated with altered concentrations of specific angiogenic factors. These alterations might in turn be reflected by changes in serum concentrations. METHOD: To determine physiological time courses of angiogenic cytokines during fracture healing as well as possible changes associated with failed consolidation, we prospectively collected serum samples from patients who had sustained surgical treatment for a long bone fracture. Fifteen patients without fracture healing 4 months after surgery (nonunion group) were matched to a collective of 15 patients with successful healing (union group). Serum concentrations of angiogenin (ANG), angiopoietin 2 (Ang-2), basic fibroblast growth factor (bFGF), platelet derived growth factor AB (PDGF-AB), pleiotrophin (PTN) and vascular endothelial growth factor (VEGF) were measured using enzyme linked immunosorbent assays over a period of 24 weeks. RESULTS: Compared to reference values of healthy uninjured controls serum concentrations of VEGF, bFGF and PDGF were increased in both groups. Peak concentrations of these cytokines were reached during early fracture healing. Serum concentrations of bFGF and PDGF-AB were significantly higher in the union group at 2 and 4 weeks after the injury when compared to the nonunion group. Serum concentrations of ANG and Ang-2 declined steadily from the first measurement in normal healing fractures, while no significant changes over time could be detected for serum concentrations of these factures in nonunion patients. PTN serum levels increased asymptotically over the entire investigation in timely fracture healing while no such increase could be detected during delayed healing. CONCLUSION: We conclude that fracture healing in human subjects is accompanied by distinct changes in systemic levels of specific angiogenic factors. Significant alterations of these physiologic changes in patients developing a fracture nonunion over time could be detected as early as 2 (bFGF) and 4 weeks (PDGF-AB) after initial trauma surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NV1FGF is an expression plasmid encoding sp.FGF-1(21-154) currently under investigation for therapeutic angiogenesis in clinical trials. NV1FGF plasmid distribution and transgene expression following intramuscular (IM) injection in patients is unknown. The study involved six patients with chronic critical limb ischemia (CLI) planned to undergo amputation. A total dose of 0.5, 2, or 4 mg NV1FGF was administered as eight IM injections (0.006, 0.25, or 0.5 mg per injection) 3-5 days before amputation. Injected sites (30 cm(3)) were divided into equally sized smaller pieces to assess spatial distribution of NV1FGF sequences (PCR), NV1FGF mRNA (reverse transcriptase-PCR), and fibroblast growth factor-1 (FGF-1)-expressing cells (immunohistochemistry). Data indicated gene expression at all doses. The distribution area was within 5-12 cm for NV1FGF sequences containing the expression cassette, up to 5 cm for NV1FGF mRNA, and up to 3 cm for FGF-1-expressing myofibers. All FGF receptors were detected indicating robust potential for bioactivity after NV1FGF gene transfer. Circulating levels of NV1FGF sequences were shown to decrease within days after injection. Data support demonstration of plasmid-mediated gene transfer and expression in muscles from patients with CLI. FGF-1 expression was shown to be limited to injection sites, which supports the concept of multiple-site injection for therapeutic use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microsomal P450 enzymes, which metabolize drugs and catalyze steroid biosynthesis require electron donation from NADPH via P450 oxidoreductase (POR). POR knockout mice are embryonically lethal, but we found recessive human POR missense mutations causing disordered steroidogenesis and Antley-Bixler syndrome (ABS), a skeletal malformation syndrome featuring craniosynostosis. Dominant mutations in exons 8 and 10 of fibroblast growth factor receptor 2 (FGFR2) cause phenotypically related craniosynostosis syndromes and were reported in patients with ABS and normal steroidogenesis. Sequencing POR and FGFR2 exons in 32 patients with ABS and/or hormonal findings suggesting POR deficiency showed complete genetic segregation of POR and FGFR2 mutations. Fifteen patients carried POR mutations on both alleles, four carried POR mutations on 1 allele, nine carried FGFR2/3 mutations on one allele and no mutation was found in three patients. The 34 affected POR alleles included 10 with A287P, 7 with R457H, 9 other missense mutations and 7 frameshifts. These 11 missense mutations and 10 others identified by database mining were expressed in E. coli, purified to apparent homogeneity, and their catalytic capacities were measured in four assays: reduction of cytochrome c, oxidation of NADPH, and support of the 17alpha-hydroxylase and 17,20 lyase activities of human P450c17. As assessed by Vmax/Km, 17,20 lyase activity provided the best correlation with clinical findings. Modeling human POR on the X-ray crystal structure of rat POR shows that these mutant activities correlate well with their locations in the structure. POR deficiency is a new disease, distinct from the craniosynostosis syndromes caused by FGFR mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 "private" mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17alpha-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR's support of catalysis by P450c17--the enzyme most closely associated with the hormonal phenotype--provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. METHODOLOGY/PRINCIPAL FINDINGS Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. CONCLUSIONS/SIGNIFICANCE TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor (FGF) receptor-like protein 1 (FGFRL1) is a recently discovered member of the FGF receptor (FGFR) family. Similar to the classical FGFRs, it contains three extracellular immunoglobulin-like domains and interacts with FGF ligands. However, in contrast to the classical receptors, it does not contain any intracellular tyrosine kinase domain and consequently cannot signal by transphosphorylation. In mouse kidneys, FgfrL1 is expressed primarily at embryonic stages E14-E15 in regions where nascent nephrons develop. In this study, we used whole-mount in situ hybridization to show the spatial pattern of five different Fgfrs in the developing mouse kidney. We compared the expression pattern of FgfrL1 with that of other Fgfrs. The expression pattern of FgfrL1 closely resembled that of Fgfr1, but clearly differed from that of Fgfr2‑Fgfr4. It is therefore conceivable that FgfrL1 signals indirectly via Fgfr1. The mechanisms by which FgfrL1 affects the activity of Fgfr1 remain to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercially available assays for the simultaneous detection of multiple inflammatory and cardiac markers in porcine blood samples are currently lacking. Therefore, this study was aimed at developing a bead-based, multiplexed flow cytometric assay to simultaneously detect porcine cytokines [interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor alpha], chemokines (IL-8 and monocyte chemotactic protein 1), growth factors [basic fibroblast growth factor (bFGF), vascular endothelial growth factor, and platelet-derived growth factor-bb], and injury markers (cardiac troponin-I) as well as complement activation markers (C5a and sC5b-9). The method was based on the Luminex xMAP technology, resulting in the assembly of a 6- and 11-plex from the respective individual singleplex situation. The assay was evaluated for dynamic range, sensitivity, cross-reactivity, intra-assay and interassay variance, spike recovery, and correlation between multiplex and commercially available enzyme-linked immunosorbent assay as well as the respective singleplex. The limit of detection ranged from 2.5 to 30,000 pg/ml for all analytes (6- and 11-plex assays), except for soluble C5b-9 with a detection range of 2-10,000 ng/ml (11-plex). Typically, very low cross-reactivity (<3% and <1.4% by 11- and 6-plex, respectively) between analytes was found. Intra-assay variances ranged from 4.9 to 7.4% (6-plex) and 5.3 to 12.9% (11-plex). Interassay variances for cytokines were between 8.1 and 28.8% (6-plex) and 10.1 and 26.4% (11-plex). Correlation coefficients with singleplex assays for 6-plex as well as for 11-plex were high, ranging from 0.988 to 0.997 and 0.913 to 0.999, respectively. In this study, a bead-based porcine 11-plex and 6-plex assay with a good assay sensitivity, broad dynamic range, and low intra-assay variance and cross-reactivity was established. These assays therefore represent a new, useful tool for the analysis of samples generated from experiments with pigs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The length of time that integral membrane proteins reside on the plasma membrane is regulated by endocytosis, a process that can inactivate these proteins by removing them from the membrane and may ultimately result in their degradation. Proteins are internalized and pass through multiple distinct intracellular compartments where targeting decisions determine their fate. Membrane proteins initially enter early endosomes, and subsequently late endosomes/multivesicular bodies (MVBs), before being degraded in the lysosome. The MVB is a subset of late endosomes characterized by the appearance of small vesicles in its luminal compartment. These vesicles contain cargo proteins sorted from the limiting membrane of the MVB. Proteins not sorted into luminal vesicles remain on the MVB membrane, from where they may be recycled back to the plasma membrane. In the case of receptor tyrosine kinases (RTKs), such as epidermal growth factor (EGF) receptor, this important sorting step determines whether a protein returns to the surface to participate in signaling, or whether its signaling properties are inactivated through its degradation in the lysosome. Hrs is a protein that resides on endosomes and is known to recruit sorting complexes that are vital to this sorting step. These sorting complexes are believed to recognize ubiquitin as sorting signals. However, the link between MVB sorting machinery and the ubiquitination machinery is not known. Recently, Hrs was shown to recruit and bind an E3 ubiquitin ligase, UBE4B, to endosomes. In an assay that is able to measure cargo movement, the disruption of the Hrs-UBE4B interaction showed impaired sorting of EGF receptor into MVBs. My hypothesis is that UBE4B may be the connection between MVB sorting and ubiquitination. This study addresses the role of UBE4B in the trafficking and ubiquitination of EGF receptor. I created stable cell lines that either overexpresses UBE4B or expresses a UBE4B with no ligase activity. Levels of EGF receptor were analyzed after certain periods of ligand-induced receptor internalization. I observed that higher expression levels of UBE4B correspond to increased degradation of EGF receptor. In an in vitro ubiquitination assay, I also determined that UBE4B mediates the ubiquitination of EGF receptor. These data suggest that UBE4B is required for EGFR degradation specifically because it ubiquitinates the receptor allowing it to be sorted into the internal vesicles of MVBs and subsequently degraded in lysosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from many other types of tumors that are resistant to TGF-b-mediated growth inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 blocks the anti-proliferative effect of TGF-b by disabling key transcriptional control mechanisms of the TGF-b cytostatic program. Specifically, DLX4 blocked the ability of TGF-b to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-b signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-b cytostatic program could explain in part the resistance of tumors to the anti-proliferative effect of TGF-b. This study provides a molecular explanation as to why tumors are resistant to the anti-proliferative effect of TGF-b in the absence of mutations in the TGF-b signaling pathway. Furthermore, this study also provides insights into how aberrant activation of a developmental patterning gene promotes tumor pathogenesis.