909 resultados para fiber optics amplifiers
Resumo:
This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
This study investigated the flexural strength of eight fiber posts (one carbon fiber, one carbon/quartz fiber, one opaque quartz fiber, two translucent quartz fiber, and three glass fiber posts). Eighty fiber posts were used and divided into eight groups (n = 10): G1: C-POST (Bisco); G2: ÆSTHETI-POST (Bisco); G3: ÆSTHETI-PLUS (Bisco); G4: LIGHT-POST (Bisco); G5: D.T. LIGHT-POST (Bisco); G6: PARAPOST WHITE (Coltene); G7: FIBERKOR (Pentron); G8: REFORPOST (Angelus). All of the samples were tested using the three-point bending test. The averages obtained were submitted to the ANOVA and to Tukey's test (p < 0.05). The mean values (MPa) of the groups ÆSTHETI-POST - carbon/ quartz fiber post (Bisco) and ÆSTHETI-PLUS - quartz fiber post (Bisco) were statistically similar and higher than the mean values of the other groups. The mean values of the groups C-POST - carbon fiber post (Bisco), LIGHT-POST - translucent quartz fiber post (Bisco), D.T. LIGHT-POST - double tapered translucent quartz fiber post (Bisco), PARAPOST WHITE - glass fiber post (Coltene) and FIBREKOR - glass fiber post (Pentron) were similar and higher than the group REFORPOST - glass fiber post (Angelus). Copyright © 2005 by the American Association of Endodontists.
Resumo:
Objective: This study determined the effects of adding monosodium glutamate (MSG) to a standard diet and a fiber-enriched diet on glucose metabolism, lipid profile, and oxidative stress in rats. Methods: Male Wistar rats (65 ± 5 g, n = 8) were fed a standard diet (control), a standard diet supplemented with 100 g of MSG per kilogram of rat body weight, a diet rich in fiber, or a diet rich in fiber supplemented with 100 g of MSG per kilogram of body weight. After 45 d of treatment, sera were analyzed for concentrations of insulin, leptin, glucose, triacylglycerol, lipid hydroperoxide, and total antioxidant substances. A homeostasis model assessment index was estimated to characterize insulin resistance. Results: Voluntary food intake was higher and feed efficiency was lower in animals fed the standard diet supplemented with MSG than in those fed the control, fiber-enriched, or fiber- and MSG-enriched diet. The MSG group had metabolic dysfunction characterized by increased levels of glucose, triacylglycerol, insulin, leptin, and homeostasis model assessment index. The adverse effects of MSG were related to an imbalance between the oxidant and antioxidant systems. The MSG group had increased levels of lipid hydroperoxide and decreased levels of total antioxidant substances. Levels of triacylglycerol and lipid hydroperoxide were decreased in rats fed the fiber-enriched and fiber- and MSG-enriched diets, whereas levels of total antioxidant substances were increased in these animals. Conclusions: MSG added to a standard diet increased food intake. Overfeeding induced metabolic disorders associated with oxidative stress in the absence of obesity. The fiber-enriched diet prevented changes in glucose, insulin, leptin, and triacylglycerol levels that were seen in the MSG group. Because the deleterious effects of MSG, i.e., induced overfeeding, were not seen in the animals fed the fiber-enriched diets, it can be concluded that fiber supplementation is beneficial by discouraging overfeeding and improving oxidative stress that is induced by an MSG diet. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The energy conservation of grating diffraction is analyzed in a particular condition of incidence in which two incident waves reach a symmetrical grating from the two sides of the grating normal at the first-order Littrow mounting. In such a situation the incident waves generate an interference pattern with the same period as the grating. Thus in each direction of diffraction, interference occurs between two consecutive diffractive orders of the symmetrical incident waves. By applying only energy conservation and the geometrical symmetry of the grating profile to this problem it is possible to establish a general constraint for the phases and amplitudes of the diffracted orders of the same incident wave. Experimental and theoretical results are presented confirming the obtained relations. © 2006 Optical Society of America.
Resumo:
Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts (n = 10 per group) were tested, either as received from the manufacturer or after chairside silica coating (30-μm CoJet-Sand). Results: There was no significant difference in the flexural strength of nonconditioned (504 to 525 MPa) and silica-coated (514 to 565 MPa) specimens (P > .05) (analysis of variance). The type of post did have a significant effect on flexural strength (P < .05). Conclusion: Chairside silica coating did not affect the flexural strength of both carbon and quartz FRC posts.
Resumo:
Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).
Resumo:
Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/ aeronautical industry. Aiming this objective, a new lightweight Fiber/ Metal Laminate (FML) has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.
Resumo:
The population inversion of the Tm3+ in GLKZ glass involved in the 1470 nm emission (3H4 → 3F 4) as a function of Tb (or Eu) concentration was calculated by computational simulation for a CW laser pumping at 792 nm. These calculations were performed using the experimental Tm→Tb an Tm→Eu transfer rates and the spectroscopic parameters of the Tm (0.1 mol %) system. The result shows that 0.2 mol % (Tb3+) and 0.4 mol % of Eu3+ ions propitiate best population inversion of Tm3+ (0.1 mol %) maximizing the amplification coefficient of germanate (GLKZ) glass when operating as laser intensity amplification at 1470 nm. Besides the effective deactivation of the 3F4 level, the presence of Tb3+ or Eu 3+ ions introduce a depopulation of the 3H4 emitting level by means of a cross relaxation process with Tm3+ ions. In spite of this, the whole effect is verified to be benefic for using Tm-doped GLKZ glass codoped with Tb3+ or Eu3+ as a suitable material for confectioning optical amplifiers that operates in the S-band for telecommunication.
Resumo:
This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.
Resumo:
Carbon fiber reinforced polymer composites have been used in wide variety of applications including, aerospace, marine, sporting equipment as well as in the defense sector due to their outstanding properties at low density. In many of their applications, moisture absorption takes place which may result in a reduction in mechanical properties even at lower temperature service. In this work, the viscoelastic properties, such as storage modulus (E′) and loss modulus (E″), were obtained through vibration damping tests for three carbon fiber/epoxy composite families up to the saturation point (6 weeks). Three carbon fiber/epoxy composites having [0/0] s, [0/90] s, and [±45] s orientations were studied. During vibration tests the storage modulus (E′) and loss modulus (E″) were monitored as a function of moisture uptake, and it was observed that the natural frequencies and E′ values decreased with the increase during hygrothermal conditioning due to the matrix plasticization. © 2007 Wiley Periodicals, Inc.
Resumo:
The aim of the study was to determine the percentage of crude protein, crude fiber and crude fat (ether extract) of 25 genotypes of kale from the Germplasm Bank of Instituto Agronômico de Campinas and of one genotype grown in the region of Jaboticabal-SP. The plants were cultivated in the field, and the leaves after collection were pre-dried in a convection oven at 65°C for 72 h. Afterward, the leaves were analyzed for crude protein, crude fiber and crude fat (ether-soluble materials). Significant differences were detected among the different genotypes for all the characteristics examined. Of the genotypes studied, six showed more than 30% crude protein: HS-20 (32.56%), Comum (31.70%), Couve de Arthur Nogueira 2 (31.16%), Pires 2 de Campinas (30.63%), Manteiga I-916 (30.36%), and Manteiga de Ribeirao Pires I-2446 (30.03%). In relation to crude fiber, the highest percentage was seen in the genotype Manteiga de Mococa (10.92%), differing significantly from the other genotypes studied. With regard to crude fat, the highest percentage was found in the genotype HS-20 (3.72%), and Pires 1 de Campinas (3.34%). Of the genotypes tested, HS-20 stood out among the others, showing both the highest percentage of protein and fat.
Resumo:
This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 μm SiOx + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.
Resumo:
Aim: Smear layer removal and collagen fiber exposure may improve periodontal treatment and regeneration. This in vitro study assessed smear layer removal and collagen fiber exposure after tetracycline hydrochloride (TTC) application on root surfaces using scanning electron microscopy (SEM). Methods and Materials: Root cementum was removed with diamond burs followed by scaling and root planning. Four hundred fifty samples were divided into ten groups: a control (saline application) and nine different TTC concentrations were applied at doses of 10, 25, 50, 75, 100, 125, 150, 200, and 250 mg/ml. The TTC application was performed in all groups in three different ways (passive, brushing, and burnishing) and at three different periods of conditioning (1, 2, and 3 minutes). A previously trained, calibrated, and blind examiner evaluated photomicrographs of the samples using Sampaio's index (2005). Statistical analysis was performed using the Kruskal-Wallis' and Dunn's tests. Results: The concentrations of 50 mg/mL and 75 mg/mL applied by burnishing were the most effective in smear layer removal and collagen fiber exposure. Both the passive mode of application (p=0.0001) and 1 minute period of application (p=0.002) were the least effective. Conclusions: The concentrations of 50 mg/mL and 75 mg/mL applied by burnishing during 2 or 3 minutes were the most effective. Clinical Significance: These parameters may be applied in periodontal procedures involving TTC root conditioning to optimize results.