842 resultados para farm accountancy data network
Resumo:
This report summarizes the financial and production records of 139 dairy farms from throughout Michigan in 2006. To be included, the farms must have produced at least 50 percent of gross cash farm income from milk and dairy animal sales. The records came from Michigan State University’s TelFarm project and the Farm Credit Service system in Michigan. The values were pooled into averages for reporting purposes. The farms are larger than would be the average of all dairy farms in Michigan. While considerable variation in the data exists, average values are reported in the summary tables and discussion that follows.
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.
Resumo:
In this paper, we propose a Loss Tolerant Reliable (LTR) data transport mechanism for dynamic Event Sensing (LTRES) in WSNs. In LTRES, a reliable event sensing requirement at the transport layer is dynamically determined by the sink. A distributed source rate adaptation mechanism is designed, incorporating a loss rate based lightweight congestion control mechanism, to regulate the data traffic injected into the network so that the reliability requirement can be satisfied. An equation based fair rate control algorithm is used to improve the fairness among the LTRES flows sharing the congestion path. The performance evaluations show that LTRES can provide LTR data transport service for multiple events with short convergence time, low lost rate and high overall bandwidth utilization.
Resumo:
As I write this, there is still snow in some ditches and fence rows, and many fields look like they are just about right for rice planting rather than corn or soybeans. Nonetheless, spring fever has hit and the field work will soon be going at full throttle. This raises a frequently asked question: “What are custom rates this year?” The Nebraska Custom Rate Survey is conducted every two years, and we are in the process of analyzing the data from our 2010 survey. We will publish those numbers as soon as possible. At this point we are working on the data for Part I, Spring and Summer Activities, and surveys are still coming in for Part II on Fall and Miscellaneous Operations. We thank all responders who helped out by completing surveys and sending us their information. We conduct a relatively extensive survey across the state, and as a result, it takes considerable time to get the data entered and analyzed by region.
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Background: A current challenge in gene annotation is to define the gene function in the context of the network of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach to better understand the biology of the system and to study how several components of this network interact with each other and keep their functions stable. However, in general there is no sufficient data to accurately recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using only the expression profiles in the inference process. Nowadays, the use of several biological information in inference methods had a significant increase in order to better recover the connections between genes and reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known connections through the included biological data, and the possibility of discovering new relationships between genes when observed the expression data. Although several works in data integration have increased the performance of the network inference methods, the real contribution of adding each type of biological information in the obtained improvement is not clear. Methods: We propose a methodology to include biological information into an inference algorithm in order to assess its prediction gain by using biological information and expression profile together. We also evaluated and compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone fusion proteins, (c) KEGG and (d) KEGG+GO. Results and conclusions: This work presents a first comparison of the gain in the use of prior biological information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates that information based on direct interaction can produce a higher improvement in the gain than data about a less specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a very important approach for the improvement of the inference. We also compared the gain in the inference of the global network and only the hubs. The results indicates that the use of biological information can improve the identification of the most connected proteins.
Resumo:
Data visualization techniques are powerful in the handling and analysis of multivariate systems. One such technique known as parallel coordinates was used to support the diagnosis of an event, detected by a neural network-based monitoring system, in a boiler at a Brazilian Kraft pulp mill. Its attractiveness is the possibility of the visualization of several variables simultaneously. The diagnostic procedure was carried out step-by-step going through exploratory, explanatory, confirmatory, and communicative goals. This tool allowed the visualization of the boiler dynamics in an easier way, compared to commonly used univariate trend plots. In addition it facilitated analysis of other aspects, namely relationships among process variables, distinct modes of operation and discrepant data. The whole analysis revealed firstly that the period involving the detected event was associated with a transition between two distinct normal modes of operation, and secondly the presence of unusual changes in process variables at this time.
Resumo:
This work proposes a method for data clustering based on complex networks theory. A data set is represented as a network by considering different metrics to establish the connection between each pair of objects. The clusters are obtained by taking into account five community detection algorithms. The network-based clustering approach is applied in two real-world databases and two sets of artificially generated data. The obtained results suggest that the exponential of the Minkowski distance is the most suitable metric to quantify the similarities between pairs of objects. In addition, the community identification method based on the greedy optimization provides the best cluster solution. We compare the network-based clustering approach with some traditional clustering algorithms and verify that it provides the lowest classification error rate. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.
Resumo:
The demand for "welfare friendly" products increases as public conscience and perception on livestock production systems grow. The public and policy-makers demand scientific information for education and to guide decision processes. This paper describes some of the last decade contributions made by scientists on the technical, economical and market areas of farm animal welfare. Articles on animal welfare were compiled on the following themes: 1) consumer behavior, 2) technical and economical viability, 3) public regulation, and 4) private certification policies. Most studies on the economic evaluation of systems that promote animal welfare involved species destined to produce export items, such as eggs, beef and pork. Few studies were found on broilers, dairy cows and fish, and data regarding other species, such as horses, sheep and goats were not found. Scientists understand that farm animal welfare is not only a matter of ethics, but also an essential tool to gain and maintain markets. However, it is unfortunate that little attention is paid to species that are not economically important for exports. Studies that emphasize on more humane ways to raise animals and that provide economic incentives to the producer are needed. An integrated multidisciplinary approach is necessary to highlight the benefits of introducing animal welfare techniques to existing production systems.
Resumo:
In the process of creation of the Unified Health System (SUS) as a universal policy seeking to ensure comprehensive care, unscheduled assistance in primary healthcare units (UBS) is an unresolved challenge. The scope of this paper is to analyze the viewpoint of health professionals on the role of primary healthcare units in meeting this demand. It is a transversal study of qualitative data obtained through questionnaires and interviews with 106 medical practitioners from 6 emergency medical services and 190 professionals from 30 units. They explained why people seek emergency care for occurrences pertaining to primary care. The content analysis technique with thematic categories was used for data analysis. Lack of resources and problems with primary health unit work processes (50.8%) were the reasons most frequently cited by emergency care physicians to explain this inadequate demand. Only 33.3% of the health unit professionals agreed that these occurrences should be attended in the primary healthcare services. The limited viewpoint of the role of health services on the unscheduled care, particularly among primary care professionals, possibly leads to restrictive practices for access by the population.
Resumo:
In this study, an effective microbial consortium for the biodegradation of phenol was grown under different operational conditions, and the effects of phosphate concentration (1.4 g L-1, 2.8 g L-1, 4.2 g L-1), temperature (25 degrees C, 30 degrees C, 35 degrees C), agitation (150 rpm, 200 rpm, 250 rpm) and pH (6, 7, 8) on phenol degradation were investigated, whereupon an artificial neural network (ANN) model was developed in order to predict degradation. The learning, recall and generalization characteristics of neural networks were studied using data from the phenol degradation system. The efficiency of the model generated by the ANN was then tested and compared with the experimental results obtained. In both cases, the results corroborate the idea that aeration and temperature are crucial to increasing the efficiency of biodegradation.
Resumo:
Complex networks have attracted increasing interest from various fields of science. It has been demonstrated that each complex network model presents specific topological structures which characterize its connectivity and dynamics. Complex network classification relies on the use of representative measurements that describe topological structures. Although there are a large number of measurements, most of them are correlated. To overcome this limitation, this paper presents a new measurement for complex network classification based on partially self-avoiding walks. We validate the measurement on a data set composed by 40000 complex networks of four well-known models. Our results indicate that the proposed measurement improves correct classification of networks compared to the traditional ones. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737515]