976 resultados para evoked brain stem auditory response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents. Methods CEFALO is a multicenter case-control study conducted in Denmark, Sweden, Norway, and Switzerland that includes all children and adolescents aged 7-19 years who were diagnosed with a brain tumor between 2004 and 2008. We conducted interviews, in person, with 352 case patients (participation rate: 83%) and 646 control subjects (participation rate: 71%) and their parents. Control subjects were randomly selected from population registries and matched by age, sex, and geographical region. We asked about mobile phone use and included mobile phone operator records when available. Odds ratios (ORs) for brain tumor risk and 95% confidence intervals (CIs) were calculated using conditional logistic regression models. Results Regular users of mobile phones were not statistically significantly more likely to have been diagnosed with brain tumors compared with nonusers (OR = 1.36; 95% CI = 0.92 to 2.02). Children who started to use mobile phones at least 5 years ago were not at increased risk compared with those who had never regularly used mobile phones (OR = 1.26, 95% CI = 0.70 to 2.28). In a subset of study participants for whom operator recorded data were available, brain tumor risk was related to the time elapsed since the mobile phone subscription was started but not to amount of use. No increased risk of brain tumors was observed for brain areas receiving the highest amount of exposure. Conclusion The absence of an exposure-response relationship either in terms of the amount of mobile phone use or by localization of the brain tumor argues against a causal association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The chemical senses smell and taste, detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to and interpreted in central brain regions. Drosophila provides an attractive model to study chemosensory coding, because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, virtually all of the peripheral chemosensory neurons are easily accessible for physiological analysis, as they are exposed on the surface of sensory organs in specialized sensory hairs called sensilla. In recent years, improvements in microscopy and instrumentation for electrode manipulation have opened up the much smaller Drosophila system to electrophysiological techniques, powerfully complementing many years of molecular genetic studies. As with most electrophysiological methods, there is probably no substitute for learning this technique directly from a laboratory in which it is already established. This protocol describes the basics of setting up the electrophysiology rig and stimulus delivery device, sample preparation, and performing and analyzing recordings of stimulus-evoked activity from Drosophila taste sensilla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurotoxic effects of the environmentally abundant mycotoxin Ochratoxin A (OTA) were studied in histotypic 3D rat brain cell cultures, comprising all brain cell types. Cultures were exposed to nanomolar OTA concentrations and samples were collected 48h after a single exposure, or after 10 days of repeated administration. OTA-induced changes in gene- and protein expression, as well as alterations in cell morphology were assessed. Forty-eight-hour OTA exposure resulted in a disruption of the neuronal cytoskeleton and reduced expression of several oligodendrocyte-specific markers indicative of demyelination. Astrocyte disturbances were revealed by a decrease in two astrocytic proteins involved in regulation of inflammatory responses, metallothioneins I and II. Repeated OTA administration induced a neuroinflammatory response, as visualized by an increase of isolectin B4 labelled cells, increased expression of pro-inflammatory cytokines, and detection of macrophagic ED1/CD68 positive cells, as well as an upregulation of neurodegenerative M1 microglial phenotype markers. Partial recovery from OTA-induced deleterious effects on oligodendrocytes and astrocytes was achieved by co-treatment with sonic hedgehog (SHH). In addition, metallothionein I and II co-treatment partially restored OTA-induced effects on oligodendrocytes after 48h, and modulated microglial reactivity after 10 days. These results suggest that OTA-exposure affects Shh-signalling, which in turn may influence both oligodendrocytes and astrocytes. Furthermore, the primarily astrocytic proteins MTI/MTII may affect microglial activation. Thus the neuroinflammatory response appears to be downstream of OTA-induced effects on demyelination, axonal instabilities and astrocytes disturbances. In conclusion, repeated OTA-exposure induced a secondary neuroinflammatory response characterized by neurodegenerative M1 microglial activation and pro-inflammatory response that could exacerbate the neurodegenerative process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream). Similar latencies were identified in response to phonological and lexico-semantic tasks, suggesting parallel processing. Typical ERP components were strongly left lateralized since no evoked responses were recorded in homologous right structures. Finally, ERP patterns suggested the inferior frontal gyrus as the likely final common pathway of both dorsal and ventral streams. These results brought out detailed evidence of the spatial-temporal information processing in the dual pathways involved in speech perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adult mammalian forebrain contains neural stem/progenitor cells (NSCs) that generate neurons throughout life. As in other somatic stem cell systems, NSCs are proposed to be predominantly quiescent and proliferate only sporadically to produce more committed progeny. However, quiescence has recently been shown not to be an essential criterion for stem cells. It is not known whether NSCs show differences in molecular dependence based on their proliferation state. The subventricular zone (SVZ) of the adult mouse brain has a remarkable capacity for repair by activation of NSCs. The molecular interplay controlling adult NSCs during neurogenesis or regeneration is not clear but resolving these interactions is critical in order to understand brain homeostasis and repair. Using conditional genetics and fate mapping, we show that Notch signaling is essential for neurogenesis in the SVZ. By mosaic analysis, we uncovered a surprising difference in Notch dependence between active neurogenic and regenerative NSCs. While both active and regenerative NSCs depend upon canonical Notch signaling, Notch1-deletion results in a selective loss of active NSCs (aNSCs). In sharp contrast, quiescent NSCs (qNSCs) remain after Notch1 ablation until induced during regeneration or aging, whereupon they become Notch1-dependent and fail to fully reinstate neurogenesis. Our results suggest that Notch1 is a key component of the adult SVZ niche, promoting maintenance of aNSCs, and that this function is compensated in qNSCs. Therefore, we confirm the importance of Notch signaling for maintaining NSCs and neurogenesis in the adult SVZ and reveal that NSCs display a selective reliance on Notch1 that may be dictated by mitotic state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow hematopoietic stem cells (HSCs) are responsible for both lifelong daily maintenance of all blood cells and for repair after cell loss. Until recently the cellular mechanisms by which HSCs accomplish these two very different tasks remained an open question. Biological evidence has now been found for the existence of two related mouse HSC populations. First, a dormant HSC (d-HSC) population which harbors the highest self-renewal potential of all blood cells but is only induced into active self-renewal in response to hematopoietic stress. And second, an active HSC (a-HSC) subset that by and large produces the progenitors and mature cells required for maintenance of day-to-day hematopoiesis. Here we present computational analyses further supporting the d-HSC concept through extensive modeling of experimental DNA label-retaining cell (LRC) data. Our conclusion that the presence of a slowly dividing subpopulation of HSCs is the most likely explanation (amongst the various possible causes including stochastic cellular variation) of the observed long term Bromodeoxyuridine (BrdU) retention, is confirmed by the deterministic and stochastic models presented here. Moreover, modeling both HSC BrdU uptake and dilution in three stages and careful treatment of the BrdU detection sensitivity permitted improved estimates of HSC turnover rates. This analysis predicts that d-HSCs cycle about once every 149-193 days and a-HSCs about once every 28-36 days. We further predict that, using LRC assays, a 75%-92.5% purification of d-HSCs can be achieved after 59-130 days of chase. Interestingly, the d-HSC proportion is now estimated to be around 30-45% of total HSCs - more than twice that of our previous estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discriminating complex sounds relies on multiple stages of differential brain activity. The specific roles of these stages and their links to perception were the focus of the present study. We presented 250ms duration sounds of living and man-made objects while recording 160-channel electroencephalography (EEG). Subjects categorized each sound as that of a living, man-made or unknown item. We tested whether/when the brain discriminates between sound categories even when not transpiring behaviorally. We applied a single-trial classifier that identified voltage topographies and latencies at which brain responses are most discriminative. For sounds that the subjects could not categorize, we could successfully decode the semantic category based on differences in voltage topographies during the 116-174ms post-stimulus period. Sounds that were correctly categorized as that of a living or man-made item by the same subjects exhibited two periods of differences in voltage topographies at the single-trial level. Subjects exhibited differential activity before the sound ended (starting at 112ms) and on a separate period at ~270ms post-stimulus onset. Because each of these periods could be used to reliably decode semantic categories, we interpreted the first as being related to an implicit tuning for sound representations and the second as being linked to perceptual decision-making processes. Collectively, our results show that the brain discriminates environmental sounds during early stages and independently of behavioral proficiency and that explicit sound categorization requires a subsequent processing stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: High-dose chemotherapy with autologous stem-cell transplantation is a standard treatment for young patients with multiple myeloma. Residual disease is almost always present after transplantation and is responsible for relapse. This phase 3, placebo-controlled trial investigated the efficacy of lenalidomide maintenance therapy after transplantation. METHODS: We randomly assigned 614 patients younger than 65 years of age who had nonprogressive disease after first-line transplantation to maintenance treatment with either lenalidomide (10 mg per day for the first 3 months, increased to 15 mg if tolerated) or placebo until relapse. The primary end point was progression-free survival. RESULTS: Lenalidomide maintenance therapy improved median progression-free survival (41 months, vs. 23 months with placebo; hazard ratio, 0.50; P<0.001). This benefit was observed across all patient subgroups, including those based on the β(2)-microglobulin level, cytogenetic profile, and response after transplantation. With a median follow-up period of 45 months, more than 70% of patients in both groups were alive at 4 years. The rates of grade 3 or 4 peripheral neuropathy were similar in the two groups. The incidence of second primary cancers was 3.1 per 100 patient-years in the lenalidomide group versus 1.2 per 100 patient-years in the placebo group (P=0.002). Median event-free survival (with events that included second primary cancers) was significantly improved with lenalidomide (40 months, vs. 23 months with placebo; P<0.001). CONCLUSIONS: Lenalidomide maintenance after transplantation significantly prolonged progression-free and event-free survival among patients with multiple myeloma. Four years after randomization, overall survival was similar in the two study groups. (Funded by the Programme Hospitalier de Recherche Clinique and others; ClinicalTrials.gov number, NCT00430365.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Pathological complete response (pCR) following chemotherapy is strongly associated with both breast cancer subtype and long-term survival. Within a phase III neoadjuvant chemotherapy trial, we sought to determine whether the prognostic implications of pCR, TP53 status and treatment arm (taxane versus non-taxane) differed between intrinsic subtypes. PATIENTS AND METHODS: Patients were randomized to receive either six cycles of anthracycline-based chemotherapy or three cycles of docetaxel then three cycles of eprirubicin/docetaxel (T-ET). pCR was defined as no evidence of residual invasive cancer (or very few scattered tumour cells) in primary tumour and lymph nodes. We used a simplified intrinsic subtypes classification, as suggested by the 2011 St Gallen consensus. Interactions between pCR, TP53 status, treatment arm and intrinsic subtype on event-free survival (EFS), distant metastasis-free survival (DMFS) and overall survival (OS) were studied using a landmark and a two-step approach multivariate analyses. RESULTS: Sufficient data for pCR analyses were available in 1212 (65%) of 1856 patients randomized. pCR occurred in 222 of 1212 (18%) patients: 37 of 496 (7.5%) luminal A, 22 of 147 (15%) luminal B/HER2 negative, 51 of 230 (22%) luminal B/HER2 positive, 43 of 118 (36%) HER2 positive/non-luminal, 69 of 221(31%) triple negative (TN). The prognostic effect of pCR on EFS did not differ between subtypes and was an independent predictor for better EFS [hazard ratio (HR) = 0.40, P < 0.001 in favour of pCR], DMFS (HR = 0.32, P < 0.001) and OS (HR = 0.32, P < 0.001). Chemotherapy arm was an independent predictor only for EFS (HR = 0.73, P = 0.004 in favour of T-ET). The interaction between TP53, intrinsic subtypes and survival outcomes only approached statistical significance for EFS (P = 0.1). CONCLUSIONS: pCR is an independent predictor of favourable clinical outcomes in all molecular subtypes in a two-step multivariate analysis. CLINICALTRIALSGOV: EORTC 10994/BIG 1-00 Trial registration number NCT00017095.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of NPs (nanoparticles) are currently under development for diagnostic and therapeutic applications in the biomedical field, yet our knowledge about their possible effects and fate in living cells is still limited. In the present study, we examined the cellular response of human brain-derived endothelial cells to NPs of different size and structure: uncoated and oleic acid-coated iron oxide NPs (8-9 nm core), fluorescent 25 and 50 nm silica NPs, TiO2 NPs (21 nm mean core diameter) and PLGA [poly(lactic-co-glycolic acid)]-PEO [poly(ethylene oxide)] polymeric NPs (150 nm). We evaluated their uptake by the cells, and their localization, generation of oxidative stress and DNA-damaging effects in exposed cells. We show that NPs are internalized by human brain-derived endothelial cells; however, the extent of their intracellular uptake is dependent on the characteristics of the NPs. After their uptake by human brain-derived endothelial cells NPs are transported into the lysosomes of these cells, where they enhance the activation of lysosomal proteases. In brain-derived endothelial cells, NPs induce the production of an oxidative stress after exposure to iron oxide and TiO2 NPs, which is correlated with an increase in DNA strand breaks and defensive mechanisms that ultimately induce an autophagy process in the cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been suggested that Ménière's disease is part of a polyganglionitis in which symptoms result from the reactivation of neurotropic virus within the internal auditory canal, and that intratympanic applications of an antiviral agent might be an efficient therapy. In 2002, we performed a pilot study ending with encouraging results. Control of vertigo was achieved in 80% of the 17 patients included. We present here a prospective, double-blind study, with a 2-year follow-up, in 29 patients referred by ENT practitioners for a surgical treatment after failure of a medical therapy. The participation in the study was offered to patients prior to surgery. A solution of ganciclovir 50 mg/ml or of NaCl 9% was delivered for 10 consecutive days via a microwick inserted into the tympanic membrane in the direction of the round window or through a ventilation tube. One patient was withdrawn from the study immediately after the end of the injections. He could not complete the follow-up period, because of persisting vertigo. As he had received the placebo, he was then treated with the solution of ganciclovir. Symptoms persisted and he underwent a vestibular neurectomy. Among the remaining 28 patients, surgery could be postponed in 22 (81%). Surgery remained necessary to control vertigo in 3 patients from the group that received the antiviral agent, and in 3 from the control group. Using an analogical scale, patients of both groups indicated a similar improvement of their health immediately after the intratympanic injections. The scores obtained with a 36-item short-form health survey quality of life questionnaire and the Dizziness Handicap Inventory were also similar for both groups. In conclusion, most patients were improved after the intratympanic injections, but there was no obvious difference between the treated and control groups. The benefit might be due to the middle ear ventilation or reflect an improvement in the patients' emotional state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé: Les récents progrès techniques de l'imagerie cérébrale non invasives ont permis d'améliorer la compréhension des différents systèmes fonctionnels cérébraux. Les approches multimodales sont devenues indispensables en recherche, afin d'étudier dans sa globalité les différentes caractéristiques de l'activité neuronale qui sont à la base du fonctionnement cérébral. Dans cette étude combinée d'imagerie par résonance magnétique fonctionnelle (IRMf) et d'électroencéphalographie (EEG), nous avons exploité le potentiel de chacune d'elles, soit respectivement la résolution spatiale et temporelle élevée. Les processus cognitifs, de perception et de mouvement nécessitent le recrutement d'ensembles neuronaux. Dans la première partie de cette thèse nous étudions, grâce à la combinaison des techniques IRMf et EEG, la réponse des aires visuelles lors d'une stimulation qui demande le regroupement d'éléments cohérents appartenant aux deux hémi-champs visuels pour en faire une seule image. Nous utilisons une mesure de synchronisation (EEG de cohérence) comme quantification de l'intégration spatiale inter-hémisphérique et la réponse BOLD (Blood Oxygenation Level Dependent) pour évaluer l'activité cérébrale qui en résulte. L'augmentation de la cohérence de l'EEG dans la bande beta-gamma mesurée au niveau des électrodes occipitales et sa corrélation linéaire avec la réponse BOLD dans les aires de VP/V4, reflète et visualise un ensemble neuronal synchronisé qui est vraisemblablement impliqué dans le regroupement spatial visuel. Ces résultats nous ont permis d'étendre la recherche à l'étude de l'impact que le contenu en fréquence des stimuli a sur la synchronisation. Avec la même approche, nous avons donc identifié les réseaux qui montrent une sensibilité différente à l'intégration des caractéristiques globales ou détaillées des images. En particulier, les données montrent que l'implication des réseaux visuels ventral et dorsal est modulée par le contenu en fréquence des stimuli. Dans la deuxième partie nous avons a testé l'hypothèse que l'augmentation de l'activité cérébrale pendant le processus de regroupement inter-hémisphérique dépend de l'activité des axones calleux qui relient les aires visuelles. Comme le Corps Calleux présente une maturation progressive pendant les deux premières décennies, nous avons analysé le développement de la fonction d'intégration spatiale chez des enfants âgés de 7 à 13 ans et le rôle de la myelinisation des fibres calleuses dans la maturation de l'activité visuelle. Nous avons combiné l'IRMf et la technique de MTI (Magnetization Transfer Imaging) afin de suivre les signes de maturation cérébrale respectivement sous l'aspect fonctionnel et morphologique (myelinisation). Chez lés enfants, les activations associées au processus d'intégration entre les hémi-champs visuels sont, comme chez l'adulte, localisées dans le réseau ventral mais se limitent à une zone plus restreinte. La forte corrélation que le signal BOLD montre avec la myelinisation des fibres du splenium est le signe de la dépendance entre la maturation des fonctions visuelles de haut niveau et celle des connections cortico-corticales. Abstract: Recent advances in non-invasive brain imaging allow the visualization of the different aspects of complex brain dynamics. The approaches based on a combination of imaging techniques facilitate the investigation and the link of multiple aspects of information processing. They are getting a leading tool for understanding the neural basis of various brain functions. Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. In this research, we explore the characteristics of interhemispheric assemblies in the visual brain by taking advantage of the complementary characteristics provided by EEG (electroencephalography) and fMRI (Functional Magnetic Resonance Imaging) techniques. These are the high temporal resolution for EEG and high spatial resolution for fMRI. In the first part of this thesis we investigate the response of the visual areas to the interhemispheric perceptual grouping task. We use EEG coherence as a measure of synchronization and BOLD (Blood Oxygenar tion Level Dependent) response as a measure of the related brain activation. The increase of the interhemispheric EEG coherence restricted to the occipital electrodes and to the EEG beta band and its linear relation to the BOLD responses in VP/V4 area points to a trans-hemispheric synchronous neuronal assembly involved in early perceptual grouping. This result encouraged us to explore the formation of synchronous trans-hemispheric networks induced by the stimuli of various spatial frequencies with this multimodal approach. We have found the involvement of ventral and medio-dorsal visual networks modulated by the spatial frequency content of the stimulus. Thus, based on the combination of EEG coherence and fMRI BOLD data, we have identified visual networks with different sensitivity to integrating low vs. high spatial frequencies. In the second part of this work we test the hypothesis that the increase of brain activity during perceptual grouping depends on the activity of callosal axons interconnecting the visual areas that are involved. To this end, in children of 7-13 years, we investigated functional (functional activation with fMRI) and morphological (myelination of the corpus callosum with Magnetization Transfer Imaging (MTI)) aspects of spatial integration. In children, the activation associated with the spatial integration across visual fields was localized in visual ventral stream and limited to a part of the area activated in adults. The strong correlation between individual BOLD responses in .this area and the myelination of the splenial system of fibers points to myelination as a significant factor in the development of the spatial integration ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.