973 resultados para electron-spin-resonance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we demonstrate the potential of permanent magnet based magnetic resonance sensors to monitor and assess the extent of pore clogging in water filtration systems. The performance of the sensor was tested on artificially clogged gravel substrates and on gravel bed samples from constructed wetlands used to treat wastewater. Data indicate that the spin lattice relaxation time is linearly related to the hydraulic conductivity in such systems. In addition, within biologically active filters we demonstrate the ability to determine the relative ratio of biomass to abiotic solids, a measurement which is not possible using alternative techniques. © 2011 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological macromolecules can rearrange interdomain orientations when binding to various partners. Interdomain dynamics serve as a molecular mechanism to guide the transitions between orientations. However, our understanding of interdomain dynamics is limited because a useful description of interdomain motions requires an estimate of the probabilities of interdomain conformations, increasing complexity of the problem.

Staphylococcal protein A (SpA) has five tandem protein-binding domains and four interdomain linkers. The domains enable Staphylococcus aureus to evade the host immune system by binding to multiple host proteins including antibodies. Here, I present a study of the interdomain motions of two adjacent domains in SpA. NMR spin relaxation experiments identified a 6-residue flexible interdomain linker and interdomain motions. To quantify the anisotropy of the distribution of interdomain orientations, we measured residual dipolar couplings (RDCs) from the two domains with multiple alignments. The N-terminal domain was directly aligned by a lanthanide ion and not influenced by interdomain motions, so it acted as a reference frame to achieve motional decoupling. We also applied {\it de novo} methods to extract spatial dynamic information from RDCs and represent interdomain motions as a continuous distribution on the 3D rotational space. Significant anisotropy was observed in the distribution, indicating the motion populates some interdomain orientations more than others. Statistical thermodynamic analysis of the observed orientational distribution suggests that it is among the energetically most favorable orientational distributions for binding to antibodies. Thus, the affinity is enhanced by a pre-posed distribution of interdomain orientations while maintaining the flexibility required for function.

The protocol described above can be applied to other biological systems in general. Protein molecule calmodulin and RNA molecule trans-activation response element (TAR) also have intensive interdomain motions with relative small intradomain dynamics. Their interdomain motions were studied using our method based on published RDC data. Our results were consistent with literature results in general. The differences could be due to previous studies' use of physical models, which contain assumptions about potential energy and thus introduced non-experimental information into the interpretations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC (SOBEC) phase separates into domains, each of which contain density modulations-stripes-aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase SOBECs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Echo (MESE; serving as a reference), a T2-prepared balanced Steady State Free Precession (T2prep) and a Gradient Spin Echo sequence. For the subsequent in vivo study, 12 healthy volunteers were examined on a clinical 1.5 T scanner. The three T2-mapping sequences were performed at three short-axis slices. Global myocardial T2 relaxation times were calculated and statistical analysis was performed. For assessment of pixel-by-pixel homogeneity, the number of segments showing an inhomogeneous T2 value distribution, as defined by a pixel SD exceeding 20 % of the corresponding observed T2 time, was counted. Results: Phantom experiments showed a greater difference of measured T2 values between T2prep and MESE than between GraSE and MESE, especially for species with low T1 values. Both, GraSE and T2prep resulted in an overestimation of T2 times compared to MESE. In vivo, significant differences between mean T2 times were observed. In general, T2prep resulted in lowest (52.4 +/- 2.8 ms) and GraSE in highest T2 estimates (59.3 +/- 4.0 ms). Analysis of pixel-by-pixel homogeneity revealed the least number of segments with inhomogeneous T2 distribution for GraSE-derived T2 maps. Conclusions: The GraSE sequence is a fast and robust sequence, combining advantages of both MESE and T2prep techniques, which promises to enable improved clinical applicability of T2-mapping in the future. Our study revealed significant differences of derived mean T2 values when applying different sequence designs. Therefore, a systematic comparison of different cardiac T2-mapping sequences and the establishment of dedicated reference values should be the goal of future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of quark transverse spin and transverse momentum distribution are two current research frontier in understanding the spin structure of the nucleons. The goal of the research reported in this dissertation is to extract new information on the quark transversity distribution and the novel transverse-momentum-dependent Sivers function in the neutron. A semi-inclusive deep inelastic scattering experiment was performed at the Hall A of the Jefferson laboratory using 5.9 GeV electron beam and a transversely polarized ^{3}He target. The scattered electrons and the produced hadrons (pions, kaons, and protons) were detected in coincidence with two large magnetic spectrometers. By regularly flipping the spin direction of the transversely polarized target, the single-spin-asymmetry (SSA) of the semi-inclusive deep inelastic reaction ^{3}He^{uparrow}(e,e'h^{\pm})X was measured over the kinematic range 0.13 < x < 0.41 and 1.3 < Q^{2} < 3.1 (GeV)^{2}. The SSA contains several different azimuthal angular modulations which are convolutions of quarks distribution functions in the nucleons and the quark fragmentation functions into hadrons. It is from the extraction of the various ``moments'' of these azimuthal angular distributions (Collins moment and Sivers moment) that we obtain information on the quark transversity distribution and the novel T-odd Sivers function. In this dissertation, I first introduced the theoretical background and experimental status of nucleon spins and the physics of SSA. I will then present the experimental setup and data collection of the JLab E06-010 experiment. Details of data analysis will be discussed next with emphasis on the kaon particle identification and the Ring-Imaging Cherenkov detector which are my major responsibilities in this experiment. Finally, results on the kaon Collins and Sivers moments extracted from the Maximum Likelihood method will be presented and interpreted. I will conclude with a discussion on the future prospects for this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7 degrees to 110 degrees. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene. Published by AIP Publishing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small polarons (SP) have been thoroughly investigated in 3d transition metal oxides and they have been found to play a crucial role in physical phenomena such as charge transport, colossal magnetoresistance and surface reactivity. However, our knowledge about these quasi-particles in 5d systems remains very limited, since the more delocalised nature of the 5d orbitals reduces the strength of the Electronic Correlation (EC), making SP formation in these compounds rather unexpected. Nevertheless, the Spin-Orbit coupled Dirac-Mott insulator Ba2NaOsO6 (BNOO) represents a good candidate for enabling polaron formation in a relativistic background, due to the relatively large EC (U ∼ 3 eV) and Jahn-Teller activity. Moreover, anomalous peaks in Nuclear Magnetic Resonance (NMR) spectroscopy experiments suggest the presence of thermally activated SP dynamics when BNOO is doped with Ca atoms. We investigate SP formation in BNOO both from an electronic and structural point of view by means of fully relativistic first principles calculations. Our numerical simulations predict a stable SP ground state and agree on the value of 810 K for the dynamical process peak found by NMR experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Background Cardiac magnetic resonance (CMR) has been shown as promising diagnostic tool in Anderson-Fabry disease (AFD) cardiomyopathy due to its ability to detect fat deposits through lower native T1 values. However no histological validation has been provided to date. Objectives To correlate CMR and histologic findings in different cardiac stages of AFD focusing on T1 mapping. Methods Fifteen AFD patients (49 years [IQR 39-63], 60% females) undergoing CMR (cines, native T1 and T2 mapping, LGE and post-contrast T1 imaging) and endomyocardial biopsy (EMB, n=11) or septal myectomy (n=4), were retrospectively evaluated. Tissue specimens were analyzed with light/electron microscopy and vacuolization amount calculated as percentages of vacuolated myocytes and vacuolated myocyte area (%VMA) through a quantitative histomorphometric color-based analysis. Results In patients without increased indexed left ventricular mass (LVMi) at CMR (67%), T1 fell as %VMA increased (r= -0.883; p<0.001), whereas no clear relationship was evident once increased LVMi occurred (r= -0.501; p=0.389). At least 45% of vacuolized myocytes and 10% of VMA were needed for low T1 to occur. %VMA positively correlate with maximal wall thickness (MWT, r=0.860, p<0.0001) and LVMi (r= 0.762; p<0.001). Increased MWT and LVMi were present with at least 45% and 80% of vacuolated myocytes, respectively, and 18% and 22% of VMA. Conclusions This study demonstrated an inverse correlation between native T1 and the vacuolization amount in patients without increased LVMi at CMR, providing a histological validation of low native T1 in AFD. Importantly, a significant vacuolization burden was needed before low T1 and left ventricle hypertrophy occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum Materials are many body systems displaying emergent phenomena caused by quantum collective behaviour, such as superconductivity, charge density wave, fractional hall effect, and exotic magnetism. Among quantum materials, two families have recently attracted attention: kagome metals and Kitaev materials. Kagome metals have a unique crystal structure made up of triangular lattice layers that are used to form the kagome layer. Due to superconductivity, magnetism, and charge ordering states such as the Charge Density Wave (CDW), unexpected physical phenomena such as the massive Anomalous Hall Effect (AHE) and possible Majorana fermions develop in these materials. Kitaev materials are a type of quantum material with a unique spin model named after Alexei Kitaev. They include fractional fluctuations of Majorana fermions and non-topological abelian anyons, both of which might be used in quantum computing. Furthermore, they provide a realistic framework for the development of quantum spin liquid (QSL), in which quantum fluctuations produce long-range entanglements between electronic states despite the lack of classical magnetic ordering. In my research, I performed several nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and muon spin spectroscopy (µSR) experiments to explain and unravel novel phases of matter within these unusual families of materials. NMR has been found to be an excellent tool for studying these materials’ local electronic structures and magnetic properties. I could use NMR to determine, for the first time, the structure of a novel kagome superconductor, RbV3Sb5, below the CDW transition, and to highlight the role of chemical doping in the CDW phase of AV3Sb5 superconductors. µSR has been used to investigate the effect of doping on kagome material samples in order to study the presence and behaviour of an anomalous phase developing at low temperatures and possibly related to time-reversal symmetry breaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effectiveness of 17% ethylene-diamine-tetra-acetic acid (EDTA) used alone or associated with 2% chlorhexidine gel (CHX) on intracanal medications (ICM) removal. Sixty single-rooted human teeth with fully formed apex were selected. The cervical and middle thirds of each canal were prepared with Gates Glidden drills and rotary files. The apical third was shaped with hand files. The specimens were randomly divided into two groups depending on the ICM used after instrumentation: calcium hydroxide Ca(OH)(2) +CHX or Ca(OH)(2) +sterile saline (SS). After seven days, each group was divided into subgroups according to the protocol used for ICM removal: instrumentation and irrigation either with EDTA, CHX+EDTA, or SS (control groups). All specimens were sectioned and processed for observation of the apical thirds by using scanning electron microscopy. Two calibrated evaluators attributed scores to each specimen. The differences between the protocols for ICM removal were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Friedman and Wilcoxon signed rank tests were used for comparison between the score of debris obtained in each root canal third. Remains of Ca(OH)(2) were found in all specimens independently of the protocol and ICM used (P > 0.05). Seventeen percent EDTA showed the best results in removing ICM when used alone (P < 0.05), particularly in those associated with CHX. It was concluded that the chelating agent 17% EDTA significantly improved the removal of ICM when used alone. Furthermore, the type of the vehicle associated with Ca(OH)(2) also plays a role in the ICM removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.