899 resultados para elastic fiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several CFCC (Continuous Fiber Composite Ceramics) production processes were tested, concluding that PIP (Polymer Impregnation, or Infiltration, Pyrolysis) and CBC (Chemically Bonded Ceramics) based procedures have interesting potential applications in the construction and transportation fields, thanks to low costs to get potentially useful thermomechanical performances. Among the different processes considered during the Doctorate (from the synthesis of new preceramic polymers, to the PIP production of SiC / SiC composites) the more promising results came from the PIP process with poly-siloxanes on basalt fabrics preforms. Low processing time and costs, together with fairly good thermomechanical properties were demonstrated, even after only one or two PIP steps in nitrogen flow. In alternative, pyrolysis in vacuum was also tested, a procedure still not discussed in literature, but which could originate an interesting reduction of production costs, with only a moderate detrimental effect on the mechanical properties. The resulting CFCC is a basalt / SiCO composite that can be applied for continuous operation up to 600°C, also in oxidant environment, as TG and XRD demonstrated. The failure upon loading is generally pseudo-plastic, being interlaminar delamination the most probable rupture mechanism. . The strength depends on several different factors (microstructure, polymer curing and subsequent ceramic phase evolution, fiber pull-out, fiber strength, fiber percentage) and can only be optimized empirically. In order to be open minded in selecting the best technology, also CBC (Chemically Bonded Ceramics) matrixes were considered during this Doctorate, making some preliminary investigations on fire-resistant phosphate cements. Our results on a commercial product evidenced some interesting thermomechanical capabilities, even after thermal treatments. However the experiments showed also phase change and possible cracking and deformations even on slow drying (at 130°C) and easy rehydration upon exposure to environmental humidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis focuses on elastic waves behaviour in ordinary structures as well as in acousto-elastic metamaterials via numerical and experimental applications. After a brief introduction on the behaviour of elastic guided waves in the framework of non-destructive evaluation (NDE) and structural health monitoring (SHM) and on the study of elastic waves propagation in acousto-elastic metamaterials, dispersion curves for thin-walled beams and arbitrary cross-section waveguides are extracted via Semi-Analytical Finite Element (SAFE) methods. Thus, a novel strategy tackling signal dispersion to locate defects in irregular waveguides is proposed and numerically validated. Finally, a time-reversal and laser-vibrometry based procedure for impact location is numerically and experimentally tested. In the second part, an introduction and a brief review of the basic definitions necessary to describe acousto-elastic metamaterials is provided. A numerical approach to extract dispersion properties in such structures is highlighted. Afterwards, solid-solid and solid-fluid phononic systems are discussed via numerical applications. In particular, band structures and transmission power spectra are predicted for 1P-2D, 2P-2D and 2P-3D phononic systems. In addition, attenuation bands in the ultrasonic as well as in the sonic frequency regimes are experimentally investigated. In the experimental validation, PZTs in a pitch-catch configuration and laser vibrometric measurements are performed on a PVC phononic plate in the ultrasonic frequency range and sound insulation index is computed for a 2P-3D phononic barrier in the sonic frequency range. In both cases the numerical-experimental results comparison confirms the existence of the numerical predicted band-gaps. Finally, the feasibility of an innovative passive isolation strategy based on giant elastic metamaterials is numerically proved to be practical for civil structures. In particular, attenuation of seismic waves is demonstrated via finite elements analyses. Further, a parametric study shows that depending on the soil properties, such an earthquake-proof barrier could lead to significant reduction of the superstructure displacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5,GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them.rnrnFor studying hypernuclear production in the ^A Z(e,e'K^+) _Lambda ^A(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector.rnrnThe hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60deg slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes.rnrnTwo fiber modules were tested with a carbon beam at GSI, showing a time resolution of 220 ps (FWHM) and a position residual of 270 microm m (FWHM) with a detection efficiency epsilon>99%.rnrnThe characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized.rnrnThe design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut für Kernphysik of the Johannes Gutenberg - Universität Mainz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Kapillarkraft entsteht durch die Bildung eines Meniskus zwischen zwei Festkörpen. In dieser Doktorarbeit wurden die Auswirkungen von elastischer Verformung und Flϋssigkeitadsorption auf die Kapillarkraft sowohl theoretisch als auch experimentell untersucht. Unter Verwendung eines Rasterkraftmikroskops wurde die Kapillarkraft zwischen eines Siliziumoxid Kolloids von 2 µm Radius und eine weiche Oberfläche wie n.a. Polydimethylsiloxan oder Polyisopren, unter normalen Umgebungsbedingungen sowie in variierende Ethanoldampfdrϋcken gemessen. Diese Ergebnisse wurden mit den Kapillarkräften verglichen, die auf einem harten Substrat (Silizium-Wafer) unter denselben Bedingungen gemessen wurden. Wir beobachteten eine monotone Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck (P) fϋr P/Psat > 0,2, wobei Psat der Sättigungsdampfdruck ist.rnUm die experimentellen Ergebnisse zu erklären, wurde ein zuvor entwickeltes analytisches Modell (Soft Matter 2010, 6, 3930) erweitert, um die Ethanoladsorption zu berϋcksichtigen. Dieses neue analytische Modell zeigte zwei verschiedene Abhängigkeiten der Kapillarkraft von P/Psat auf harten und weichen Oberflächen. Fϋr die harte Oberfläche des Siliziumwafers wird die Abhängigkeit der Kapillarkraft vom Dampfdruck vom Verhältnis der Dicke der adsorbierten Ethanolschicht zum Meniskusradius bestimmt. Auf weichen Polymeroberflächen hingegen hängt die Kapillarkraft von der Oberflächenverformung und des Laplace-Drucks innerhalb des Meniskus ab. Eine Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck hat demnach eine Abnahme des Laplace-Drucks mit zunehmendem Meniskusradius zur folge. rnDie analytischen Berechnungen, fϋr die eine Hertzsche Kontakt-deformation angenommen wurde, wurden mit Finit Element Methode Simulationen verglichen, welche die reale Deformation des elastischen Substrats in der Nähe des Meniskuses explizit berϋcksichtigen. Diese zusätzliche nach oben gerichtete oberflächenverformung im Bereich des Meniskus fϋhrt zu einer weiteren Erhöhung der Kapillarkraft, insbesondere fϋr weiche Oberflächen mit Elastizitätsmodulen < 100 MPa.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis is to make static tensile test on four Carbon Fiber Reinforced Polymer laminates, in such a way as to obtain the ultimate tensile strength of these laminates; in particular, the laminates analyzed were produced by Hand Lay-up technology. Testing these laminates we have a reference point on which to compare other laminates and in particular CFRP laminate produced by RTM technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dentistry the restoration of decayed teeth is challenging and makes great demands on both the dentist and the materials. Hence, fiber-reinforced posts have been introduced. The effects of different variables on the ultimate load on teeth restored using fiber-reinforced posts is controversial, maybe because the results are mostly based on non-standardized in vitro tests and, therefore, give inhomogeneous results. This study combines the advantages of in vitro tests and finite element analysis (FEA) to clarify the effects of ferrule height, post length and cementation technique used for restoration. Sixty-four single rooted premolars were decoronated (ferrule height 1 or 2 mm), endodontically treated and restored using fiber posts (length 2 or 7 mm), composite fillings and metal crowns (resin bonded or cemented). After thermocycling and chewing simulation the samples were loaded until fracture, recording first damage events. Using UNIANOVA to analyze recorded fracture loads, ferrule height and cementation technique were found to be significant, i.e. increased ferrule height and resin bonding of the crown resulted in higher fracture loads. Post length had no significant effect. All conventionally cemented crowns with a 1-mm ferrule height failed during artificial ageing, in contrast to resin-bonded crowns (75% survival rate). FEA confirmed these results and provided information about stress and force distribution within the restoration. Based on the findings of in vitro tests and computations we concluded that crowns, especially those with a small ferrule height, should be resin bonded. Finally, centrally positioned fiber-reinforced posts did not contribute to load transfer as long as the bond between the tooth and composite core was intact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delicate anatomy of the ear require surgeons to use great care when operating on its internal structures. One example for such an intervention is the stapedectomy, where a small crook shaped piston is placed in the oval window of the cochlea and connected to the incus through crimping thus bypassing the diseased stapes. Performing the crimp process with the correct force is necessary since loose crimps poorly transmit sound whereas tight crimps will eventually result in necrosis of the incus. Clinically, demand is high to reproducibly conduct the crimp process through a precise force measurement. For this reason, we have developed a fiber Bragg grating (FBG) integrated microforceps for use in such interventions. This device was calibrated, and tested in cadaver preparations. With this instrument we were able to measure for the first time forces involved in crimping a stapes prosthesis to the incus. We also discuss a method of attaching and actuating such forceps in conjunction with a robot currently under development in our group. Each component of this system can be used separately or combined to improve surgical accuracy, confidence and outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reduce the risk of disabling postoperative functional deficit in patients with lesions in the dominant hemisphere, information about the localization of eloquent language areas is mandatory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to assess the repeatability of spectral-domain-OCT (SD-OCT) retinal nerve fiber layer thickness (RNFL) thickness measurements in a non-glaucoma group and patients with glaucoma and to compare these results to conventional time-domain-OCT (TD-OCT).