982 resultados para eggshell porosity
Resumo:
A study has been made of the effects of welding and material variables on the occurrence of porosity in tungsten inert gas arc welding of copper. The experiments were based on a statistical design and variables included, welding current, welding speed, arc atmosphere composition, inert gas flow rate, weld preparation, and base material. The extent of weld metal porosity was assessed by density measurement and its morphology by X-ray radiography and metallography. In conjunction with this the copper-steam reaction has been investigated under conditions of controlled atmosphere arc melting. The welding experiments have shown that the extent of steam porosity is increased by increased water vapour content of the arc atmosphere, increased oxygen content of the base material and decreased welding speed. The arc melting experiments have shown that the steam reaction occurs in the body of the weld pool and proceeds to an apparent equi1ibrium state appropriate to to its temperature, the hydrogen and oxygen being supplied by the dissociation of water vapour in the arc atmosphere. It has been shown conclusively that nitrogen porosity can occur in the tungsten inert gas arc welding of copper and that this porosity can be eliminated by using filler wires containing small amounts of aluminum and titanium. Since it has been shown to be much more difficult to produce sound butt welds than melt runs it has been concluded that the porosity associated with joint fit up is due to nitrogen entrained into tho arc atmosphere. Clearly atmospheric entrainment would also, to a much lesser extent, involve water vapour. From a practical welding point of view it has thus been postulated that use of a filler wire containing small amounts of aluminum and/or titanium would eliminate both forms of porosity since these elements are both strongJy deoxidising and denitriding.
Resumo:
We prove that in some classes of optimization problems, like lower semicontinuous functions which are bounded from below, lower semi-continuous or continuous functions which are bounded below by a coercive function and quasi-convex continuous functions with the topology of the uniform convergence, the complement of the set of well-posed problems is σ-porous. These results are obtained as realization of a theorem extending a variational principle of Ioffe-Zaslavski.
Modifying the hierarchical porosity of SBA-15 via mild-detemplation followed by secondary treatments
Resumo:
Fenton-chemistry-based detemplation combined with secondary treatments offers options to tune the hierarchical porosity of SBA-15. This approach has been studied on a series of SBA-15 mesophases and has been compared to the conventional calcination. The as-synthesized and detemplated materials were studied with regard to their template content (TGA, CHN), structure (SAXS, TEM), surface hydroxylation (Blin-Carterets approach), and texture (high-resolution argon physisorption). Fenton detemplation achieves 99% of template removal, leading to highly hydroxylated materials. The structure is better preserved when a secondary treatment is applied after the Fenton oxidation, due to the intense capillary forces during drying in water. Two successful approaches are presented: drying in a low-surface-tension solvent (such as n-BuOH) and a hydrothermal stabilization to further condense the structure and make it structurally more robust. Both approaches give rise to remarkably low structural shrinkage, lower than calcination and the direct water-dried Fenton. Interestingly, the derived textural features are remarkably different. The n-BuOH exchange route gives rise to highly hierarchical structures with enhanced interconnecting pores and the highest surface areas. The hydrothermal stabilization produces large-pore SBA-15 structures with high pore volume, intermediate interconnectivity, and minimal micropores. Therefore, the hierarchical texture can be fine-tuned in these two fashions while the template is removed under mild conditions.