936 resultados para egg cortex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual cortex of macaque monkeys consists of a large number of cortical areas that span the occipital, parietal, temporal, and frontal lobes and occupy more than half of cortical surface. Although considerable progress has been made in understanding the contributions of many occipital areas to visual perceptual processing, much less is known concerning the specific functional contributions of higher areas in the temporal and frontal lobes. Previous behavioral and electrophysiological investigations have demonstrated that the inferotemporal cortex (IT) is essential to the animal's ability to recognize and remember visual objects. While it is generally recognized that IT consists of a number of anatomically and functionally distinct visual-processing areas, there remains considerable controversy concerning the precise number, size, and location of these areas. Therefore, the precise delineation of the cortical subdivisions of inferotemporal cortex is critical for any significant progress in the understanding of the specific contributions of inferotemporal areas to visual processing. In this study, anterograde and/or retrograde neuroanatomical tracers were injected into two visual areas in the ventral posterior and central portions of IT (areas PITv and CITvp) to elucidate the corticocortical connections of these areas with well known areas of occipital cortex and with less well understood regions of inferotemporal cortex. The locations of injection sites and the delineation of the borders of many occipital areas were aided by the pattern of interhemispheric connections, revealed following callosal transection and subsequent labeling with HRP. The resultant patterns of connections were represented on two-dimensional computational (CARET) and manual cortical maps and the laminar characteristics and density of the projection fields were quantified. The laminar and density features of these corticocortical connections demonstrate thirteen anatomically distinct subdivisions or areas distributed within the superior temporal sulcus and across the inferotemporal gyrus. These results serve to refine previous descriptions of inferotemporal areas, validate recently identified areas, and provide a new description of the hierarchical relationships among occipitotemporal cortical areas in macaques. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary motor cortex (M1) is involved in the production of voluntary movement and contains a complete functional representation, or map, of the skeletal musculature. This functional map can be altered by pathological experiences, such as peripheral nerve injury or stroke, by pharmacological manipulation, and by behavioral experience. The process by which experience-dependent alterations of cortical function occur is termed plasticity. In this thesis, plasticity of M1 functional organization as a consequence of behavioral experience was examined in adult primates (squirrel monkeys). Maps of movement representations were derived under anesthesia using intracortical microstimulation, whereby a microelectrode was inserted into the cortex to electrically stimulate corticospinal neurons at low current levels and evoke movements of the forelimb, principally of the hand. Movement representations were examined before and at several times after training on behavioral tasks that emphasized use of the fingers. Two behavioral tasks were utilized that dissociated the repetition of motor activity from the acquisition of motor skills. One task was easy to perform, and as such promoted repetitive motor activity without learning. The other task was more difficult, requiring the acquisition of motor skills for successful performance. Kinematic analysis indicated that monkeys used a consistent set of forelimb movements during pellet extractions. Functional mapping revealed that repetitive motor activity during the easier task did not produce plastic changes in movement representations. Instead, map plasticity, in the form of selective expansions of task-related movement representations, was only produced following skill acquisition on the difficult task. Additional studies revealed that, in general, map plasticity persisted without further training for up to three months, in parallel with the retention of task-related motor skills. Also, extensive additional training on the small well task produced further improvements in performance, and further changes in movement maps. In sum, these experiments support the following three conclusions regarding the role of M1 in motor learning. First, behaviorally-driven plasticity is learning-dependent, not activity-dependent. Second, plastic changes in M1 functional representations represent a neural correlate of acquired motor skills. Third, the persistence of map plasticity suggests that M1 is part of the neural substrate for the memory of motor skills. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The samples were collected using a T-80 net (375 µm mesh size) equipped with a non-filtering cod-end in the North Atlantic during the G.O. Sars Trans-Atlantic cruise in 2013. Within 15-30 minutes after the recovery, 20 Calanus finmarchicus females were sorted out under microscope in ice chilled petri dishes and incubated individually in 600 ml polycarbonate culture bottles resulting in 20 replicate measurements. The bottles were filled with 50 µm screened seawater originated from 6 m water depth. The samples were incubated upright in thermoroom for 24 hours at the surface temperature (3°C). After the samples had been filtered (40 µm filter), female prosome length, egg as well as pellet abundance were determined. Subsequently, eggs from six females were incubated in petri dishes at 5°C. After 4 days, the number of nauplii and eggs were counted in order to calculate hatching success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezodorus guildinii Westwood and Nezara viridula (L.) (Hemiptera: Pentatomidae) are important soybean pests. P. guildinii causes more injury and is less susceptible to insecticides compared to N. viridula. N. viridula egg parasitoids are well studied; however, little is known about parasitoids of P. guildinii. Alfalfa, soybean and red clover were sampled during several seasons to characterize the abundance of both stink bugs, to determine their egg parasitoids, and to estimate parasitoids impact. In the field, Telenomus podisi (Ashmead),Trissolcus urichi (Crawford) and Trissolcus basalis (Wollaston) (Hymenoptera: Platygastridae) emerged from P. guildinii, while only T. basalis (Wollaston) (Hymenoptera: Platygastridae) emerged from N. viridula. The proportions of parasitized eggs (i. e., the parasitoid impact) and egg masses, as well as the number of parasitized eggs/total number of eggs of the parasitized egg masses, were similar for alfalfa and soybean. Parasitism was not observed in red pclover. Parasitoid impact was lower during the dry growing seasons. Although P. guildinii field parasitism by T. urichi was less significant, laboratory experiments from the bibliography indicate that this wasp species performs well on this host. Trissolcus urichi would be an important biological control agent against P. guildinii, principally when the stink bug is more abundant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ingestion on ciliates and phytoplankton dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod ingestion was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 20 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Clausocalanus furcatus, and Temoraa stylifera according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). The egg production dataset is based on samples taken during October 2008 in Northern Aegean Sea, the area influenced by the Black Sea water outflow. A Lagrangian experiment was established and copepod egg production was estimated from experiments performed at stations according to the different positions of drifters during the cruise. Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Clausocalanus furcatus, Temora stylifera. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mgC/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaucous gulls (Larus hyperboreus) and their eggs from Svalbard (Norwegian Arctic) have been used as biomonitors of contaminants in the marine environment. In this study, the enantiomer fractions (EFs) of chiral chlordanes and atropisomeric polychlorinated biphenyl (PCB) congeners were determined in the blood plasma of adult male and female glaucous gulls from three breeding colonies in Svalbard. Plasma EFs were similar in magnitude and direction to EFs previously reported in glaucous gulls from other arctic food webs, suggesting overall similarities in the biochemical processes influencing the EFs of bioaccumulated organochlorine (OC) contaminants within the food webs at those locations. Additionally, EFs in yolk of eggs collected concurrently from within the same nesting colonies varied with location, laying date, and OC concentrations, and may be influenced by changes in the local feeding ecology between those colonies. No differences were found between the EFs for any analyte in female gulls compared to those found in egg yolk, indicating that processes involved in the maternal transfer of chlordanes and PCBs to eggs do not modulate the stereochemical ratio between enantiomers. Therefore, the use of eggs as a valuable and noninvasive means of OC biomonitoring may also extend to enantiomer compositions in glaucous gulls, and perhaps also in other seabird species from arctic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copepod Ingestion on ciliates, phytoplankton and the copepod production dataset is based on samples taken during April 2008 in Dardanelles Straits, Marmara Sea and Bosporus Straits at the third priority stations. These experiments were set up according to DoW of Sesame project. Copepods for the experiments were obtained with slow non-quantitative tows from the upper 50 m layer of the water column using 200 µm mesh size nets fitted with a large non-filtering cod end. For the grazing experiments we used the following copepod species: Centropages typicus and Acartia clausi according to the relevant reference (Bamstedt et al. 2000). Copepod clearance rates on ciliates were calculated according to Frost equations (Frost 1972). Ingestion rates were calculated by multiplying clearance rates by the initial standing stocks (Bamstedt et al. 2000). Egg production rates of the dominant calanoid copepods were determined by incubation of fertilised females (eggs/female/day) collected in the 0-20m layer. Copepod egg production was measured for the copepods Centropages typicus and Acartia clausi. On board experiments for the estimation of copepod egg production were taken place. For the estimation of copepod production (mg/m**2/day), lengths (copepods and eggs) were converted to body carbon (Hopcroft et al., 1998) and production was estimated from biomass and weight-specific egg production rates, by assuming that those rates are representative for juvenile specific growth rates (Berggreen et al., 1988).