893 resultados para dual-frame
Resumo:
A novel compact single-layer dual frequency microstrip antenna which uses an H-shaped geometry with two U-shaped slots embedded near the radiation edges, is presented. By changing the design parameters, the lower and higher resonant frequencies can be controlled easily, and a range of frequency ratios (1.716-2.363) can be obtained in this design. For the two operating frequencies of the proposed antenna, the same polarization planes and broadside radiation patterns are achieved. Compared to the regular dualfrequency patch antenna, this antenna can realize a significant size reduction
Resumo:
A novel reconfigurable, single feed, dual frequency, dualpolarized operation of a hexagonal slot-loaded square mwrostrip antenna is presented in this paper. A pin diode incorporated in the slot is used to switch the two operating frequencies considerably, without significantly affecting the radiation characteristics and gain. The proposed antenna provides a size reduction up to 61% and 26% Jor the two resonating frequencies, compared to standard rectangular patches. This design also gives considerable bandwidth up to 3.3% and 4.27%, for the two frequencies with a low operating frequency ratio
Resumo:
A new design for a compact electronically reconffgurable singlefeed dual frequency dual-polarized operation of a square-microstrip antenna capable of achieving tunable frequency ratios in the range 1.1 to 1.37 is proposed and experimentally studied. Varactor diodes inlegruted with the arms of the hexagonal slot and embedded in the square patch are used to tune the operating frequencies by applying reverse-bias voltage. The design has the advantage of size reduction up to 73.21% and 49.86% for the two resonant frequencies, respectively, as compared to standard rectangular patches. The antenna offers good bandwidth of 5.74% and 5.36% for the two operating frequencies. A highly simplified tuning circuitry without any transmission lines adds to the compactness of the design
Resumo:
A novel design of a computer electronically reconfigurable dual frequency dual polarized single feed hexagonal slot loaded microstrip antenna in L-band is introduced in this chapter. pin diodes are used to switch the operating frequencies considerably without much affecting the radiation characteristics and gain. the antenna can work with a frequency ratio varying in the wide range from 1.2 to 1.4. the proposed design has an added advantage of size reduction up to 72.21% and 46.84% for the two resonating frequencies compared to standard rectangular patches. the design also gives considerable bandwidth of up to 2.82% and 2.42 % for the operating frequencies.
Resumo:
Department of Electronics, Cochin University of Science and Technology
Resumo:
The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.
Resumo:
Department of Elecctronics, Cochin University of Science and Technology
Resumo:
The thesis explores the outcome of the exhaustive theoretical and experimental investigations performed on Octagonal Microstrip Antenna configurations. Development of the MATLAB TM backed 3D-Conformal Finite Difference Time Domain (CFDTD)Modeller for the numerical computation of the radiation characteristics of the antenna is the theme of the work. The predicted results are verified experimentally and by IE3D TM simulation. The influence of the patch dimensions,feed configurations,feed dimensions and feed positions upon the radiation performance of the antenna is studied in detail. Octagonal Microstrip Antenna configurations suitable for Mobile-Bluetooth application is dealt in detail. A simple design formula for the regular Octagonal geometry is also presented. A compact planar multi band antenna for GPS/DCS/2.4/5.8GHz WLAN application is included as appendix A. Planar near field measurement technique is explained in appendix B.
Resumo:
The thesis is the outcome of the theoretical and experimental investigations on mocrostrip-fed printed strip monopole antenna.Finite ground plane has been effectively utilized to excite a new resonance near the fundamental mode by introducing another extended strip from the ground plane,without affecting compactness.Further size reduction was achieved by carrying out folding analysis on dual strip antenna and a compact folded dual strip antenna has been designed.Design methodologies for both the compact dual band antennas are presented.The proposed antennas can be used for mobile and WLAN applications due to wide bandwidth,moderate gain and omnidirectional radiation coverage.
Resumo:
A sensitive method based on the principle of photothermal phenomena to study the energy transfer processes in organic dye mixtures is presented. A dual beam thermal lens method can be very effectively used as an alternate technique to determine the molecular distance between donor and acceptor in fluorescein–rhodamine B mixture using optical parametric oscillator.
Resumo:
The dual-beam thermal lens technique has been found to be very effective for the measurement of fluorescence quantum yields of dye solutions. The concentration-dependence of the quantum yield of rhodamine B in methanol is studied here using this technique. The observed results are in line with the conclusion that the reduction in the quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. The thermal lens has been found to become abberated above 40 mW of pump laser power. This low value for the upper limit of pump power is due to the fact that the medium is a resonantly absorbing one.
Resumo:
In this paper we report the use of the dual beam thermal lens technique as a quantitative method to determine absolute fluorescence quantum efficiency and concentration quenching of fluorescence emission from rhodamine 6G doped Poly(methyl methacrylate) (PMMA), prepared with different concentrations of the dye. A comparison of the present data with that reported in the literature indicates that the observed variation of fluorescence quantum yield with respect to the dye concentration follows a similar profile as in the earlier reported observations on rhodamine 6G in solution. The photodegradation of the dye molecules under cw laser excitation is also studied using the present method.
Resumo:
The coplanar wave guide is an attractive device in microwave integrated circuits due to its uniplanar nature, ease of fabrication and low production cost. Several attempts are already done to explore the radiating modes in coplanar wave guide transmission lines. Usually coplanar wave guides are excited by an SMA connector with its centre conductor connected to the exact middle of the centre strip and the outer ground conductor to the two ground strips. The mode excited on it is purely a bound mode. The E-field distribution in the two slots are out of phase and there for cancels at the far field. This thesis addresses an attempt to excite an in phase E-field distribution in the two slots of the co planar wave guide by employing a feed asymmetry, in order to get radiation from the two large slot discontinuities of the coplanar waveguide. The omni directional distribution of the radiating energy can be achieved by widening the centre strip.The first part of the thesis deals with the investigations on the resonance phenomena of conventional coplanar waveguides at higher frequency bands. Then an offset fed open circuited coplanar waveguide supporting resonance/radiation phenomena is analyzed. Finally, a novel compact co planar antenna geometry with dual band characteristics, suitable for mobile terminal applications is designed and characterized using the inferences from the above study.
Resumo:
Nano structured noble metals have very important applications in diverse fields as photovoltaics, catalysis, electronic and magnetic devices, etc. Here, we report the application of dual beam thermal lens technique for the determination of the effect of silver sol on the absolute fluorescence quantum yield (FQY) of the laser dye rhodamine 6G. A 532 nm radiation from a diode pumped solid state laser was used as the excitation source. It has been observed that the presence of silver sol decreases the fluorescence quantum efficiency. This is expected to have a very important consequence in enhancing Raman scattering which is an important spectrochemical tool that provides information on molecular structures. We have also observed that the presence of silver sol can enhance the thermal lens signal which makes the detection of the signal easier at any concentration.
Resumo:
A compact, dual band coplanar waveguide fed modified T-shaped uniplanar antenna is presented. The antenna has resonances at 1.77 and 5.54 GHz with a wide band from 1.47–1.97 GHz and from 5.13–6.48 GHz with an impedance bandwidth of 34% and 26%, respectively. Also the antenna has an average gain of 3 dBi in lower band and 3.5 dBi in higher band with an average efficiency of 90%.