999 resultados para drying rate
Resumo:
The application of continuous positive airway pressure (CPAP) produces important hemodynamic alterations, which can influence breathing pattern (BP) and heart rate variability (HRV). The aim of this study was to evaluate the effects of different levels of CPAP on postoperative BP and HRV after coronary artery bypass grafting (CABG) surgery and the impact of CABG surgery on these variables. Eighteen patients undergoing CABG were evaluated postoperatively during spontaneous breathing (SB) and application of four levels of CPAP applied in random order: sham (3 cmH2O), 5 cmH2O, 8 cmH2O, and 12 cmH2O. HRV was analyzed in time and frequency domains and by nonlinear methods and BP was analyzed in different variables (breathing frequency, inspiratory tidal volume, inspiratory and expiratory time, total breath time, fractional inspiratory time, percent rib cage inspiratory contribution to tidal volume, phase relation during inspiration, phase relation during expiration). There was significant postoperative impairment in HRV and BP after CABG surgery compared to the preoperative period and improvement of DFAα1, DFAα2 and SD2 indexes, and ventilatory variables during postoperative CPAP application, with a greater effect when 8 and 12 cmH2O were applied. A positive correlation (P < 0.05 and r = 0.64; Spearman) was found between DFAα1 and inspiratory time to the delta of 12 cmH2O and SB of HRV and respiratory values. Acute application of CPAP was able to alter cardiac autonomic nervous system control and BP of patients undergoing CABG surgery and 8 and 12 cmH2O of CPAP provided the best performance of pulmonary and cardiac autonomic functions.
Resumo:
We determined the response characteristics and functional correlates of the dynamic relationship between the rate (Δ) of oxygen consumption ( O2) and the applied power output (work rate = WR) during ramp-incremental exercise in patients with mitochondrial myopathy (MM). Fourteen patients (7 males, age 35.4 ± 10.8 years) with biopsy-proven MM and 10 sedentary controls (6 males, age 29.0 ± 7.8 years) took a ramp-incremental cycle ergometer test for the determination of the O2 on-exercise mean response time (MRT) and the gas exchange threshold (GET). The ΔO2/ΔWR slope was calculated up to GET (S1), above GET (S2) and over the entire linear portion of the response (S T). Knee muscle endurance was measured by isokinetic dynamometry. As expected, peak O2 and muscle performance were lower in patients than controls (P < 0.05). Patients had significantly lower ΔO2/ΔWR than controls, especially the S2 component (6.8 ± 1.5 vs 10.3 ± 0.6 mL·min-1·W-1, respectively; P < 0.001). There were significant relationships between ΔO2/ΔWR (S T) and muscle endurance, MRT-O2, GET and peak O2 in MM patients (P < 0.05). In fact, all patients with ΔO2/ΔWR below 8 mL·min-1·W-1 had severely reduced peak O2 values (<60% predicted). Moreover, patients with higher cardiopulmonary stresses during exercise (e.g., higher Δ ventilation/carbon dioxide output and Δ heart rate/ΔO2) had lower ΔO2/ΔWR (P < 0.05). In conclusion, a readily available, effort-independent index of aerobic dysfunction during dynamic exercise (ΔO2/ΔWR) is typically reduced in patients with MM, being related to increased functional impairment and higher cardiopulmonary stress.
Resumo:
The objectives of this study were to evaluate and compare the use of linear and nonlinear methods for analysis of heart rate variability (HRV) in healthy subjects and in patients after acute myocardial infarction (AMI). Heart rate (HR) was recorded for 15 min in the supine position in 10 patients with AMI taking β-blockers (aged 57 ± 9 years) and in 11 healthy subjects (aged 53 ± 4 years). HRV was analyzed in the time domain (RMSSD and RMSM), the frequency domain using low- and high-frequency bands in normalized units (nu; LFnu and HFnu) and the LF/HF ratio and approximate entropy (ApEn) were determined. There was a correlation (P < 0.05) of RMSSD, RMSM, LFnu, HFnu, and the LF/HF ratio index with the ApEn of the AMI group on the 2nd (r = 0.87, 0.65, 0.72, 0.72, and 0.64) and 7th day (r = 0.88, 0.70, 0.69, 0.69, and 0.87) and of the healthy group (r = 0.63, 0.71, 0.63, 0.63, and 0.74), respectively. The median HRV indexes of the AMI group on the 2nd and 7th day differed from the healthy group (P < 0.05): RMSSD = 10.37, 19.95, 24.81; RMSM = 23.47, 31.96, 43.79; LFnu = 0.79, 0.79, 0.62; HFnu = 0.20, 0.20, 0.37; LF/HF ratio = 3.87, 3.94, 1.65; ApEn = 1.01, 1.24, 1.31, respectively. There was agreement between the methods, suggesting that these have the same power to evaluate autonomic modulation of HR in both AMI patients and healthy subjects. AMI contributed to a reduction in cardiac signal irregularity, higher sympathetic modulation and lower vagal modulation.
Resumo:
The objective was to elucidate the relationships between serum concentrations of the gut hormone peptide YY (PYY) and ghrelin and growth development in infants for potential application to the clinical observation index. Serum concentrations of PYY and ghrelin were measured using radioimmunoassay from samples collected at the clinic. For each patient, gestational age, birth weight, time required to return to birth weight, rate of weight gain, time required to achieve recommended daily intake (RDI) standards, time required for full-gastric feeding, duration of hospitalization, and time of administration of total parenteral nutrition were recorded. Serum PYY and ghrelin concentrations were significantly higher in the preterm group (N = 20) than in the full-term group (N = 20; P < 0.01). Within the preterm infant group, the serum concentrations of PYY and ghrelin on postnatal day (PND) 7 (ghrelin = 1485.38 ± 409.24; PYY = 812.37 ± 153.77 ng/L) were significantly higher than on PND 1 (ghrelin = 956.85 ± 223.09; PYY = 545.27 ± 204.51 ng/L) or PND 3 (ghrelin = 1108.44 ± 351.36; PYY = 628.96 ± 235.63 ng/L; P < 0.01). Both serum PYY and ghrelin concentrations were negatively correlated with body weight, and the degree of correlation varied with age. Serum ghrelin concentration correlated negatively with birth weight and positively with the time required to achieve RDI (P < 0.05). In conclusion, serum PYY and ghrelin concentrations reflect a negative energy balance, predict postnatal growth, and enable compensation. Further studies are required to elucidate the precise concentration and roles of PYY and ghrelin in newborns and to determine the usefulness of measuring these hormones in clinical practice.
Resumo:
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW) = rib cage (V RC) + abdomen (V AB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05). EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI) V CW (P < 0.05). In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
Resumo:
Studies on the assessment of heart rate variability threshold (HRVT) during walking are scarce. We determined the reliability and validity of HRVT assessment during the incremental shuttle walk test (ISWT) in healthy subjects. Thirty-one participants aged 57 ± 9 years (17 females) performed 3 ISWTs. During the 1st and 2nd ISWTs, instantaneous heart rate variability was calculated every 30 s and HRVT was measured. Walking velocity at HRVT in these tests (WV-HRVT1 and WV-HRVT2) was registered. During the 3rd ISWT, physiological responses were assessed. The ventilatory equivalents were used to determine ventilatory threshold (VT) and the WV at VT (WV-VT) was recorded. The difference between WV-HRVT1 and WV-HRVT2 was not statistically significant (median and interquartile range = 4.8; 4.8 to 5.4 vs4.8; 4.2 to 5.4 km/h); the correlation between WV-HRVT1 and WV-HRVT2 was significant (r = 0.84); the intraclass correlation coefficient was high (0.92; 0.82 to 0.96), and the agreement was acceptable (-0.08 km/h; -0.92 to 0.87). The difference between WV-VT and WV-HRVT2 was not statistically significant (4.8; 4.8 to 5.4 vs 4.8; 4.2 to 5.4 km/h) and the agreement was acceptable (0.04 km/h; -1.28 to 1.36). HRVT assessment during walking is a reliable measure and permits the estimation of VT in adults. We suggest the use of the ISWT for the assessment of exercise capacity in middle-aged and older adults.
Resumo:
The prevalence of obesity has increased to epidemic status worldwide. Thousands of morbidly obese individuals undergo bariatric surgery for sustained weight loss; however, mid- and long-term outcomes of this surgery are still uncertain. Our objective was to estimate the 10-year mortality rate, and determine risk factors associated with death in young morbidly obese adults who underwent bariatric surgery. All patients who underwent open Roux-in-Y gastric bypass surgery between 2001 and 2010, covered by an insurance company, were analyzed to determine possible associations between risk factors present at the time of surgery and deaths related and unrelated to the surgery. Among the 4344 patients included in the study, 79% were female with a median age of 34.9 years and median body mass index (BMI) of 42 kg/m2. The 30-day and 10-year mortality rates were 0.55 and 3.34%, respectively, and 53.7% of deaths were related to early or late complications following bariatric surgery. Among these, 42.7% of the deaths were due to sepsis and 24.3% to cardiovascular complications. Male gender, age ≥50 years, BMI ≥50 kg/m2, and hypertension significantly increased the hazard for all deaths (P<0.001). Age ≥50 years, BMI ≥50 kg/m2, and surgeon inexperience elevated the hazard of death from causes related to surgery. Male gender and age ≥50 years were the factors associated with increased mortality from death not related to surgery. The overall risk of death after bariatric surgery was quite low, and half of the deaths were related to the surgery. Older patients and superobese patients were at greater risk of surgery-related deaths, as were patients operated on by less experienced surgeons.
Resumo:
The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%V˙O2R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and V˙O2 at GET and HRVT were 16 bpm (P<0.001) and 5.2 mL·kg-1·min-1 (P=0.001) higher in running than cycling, but no significant differences were observed between running and walking, or cycling and walking (P>0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and %V˙O2R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and %V˙O2R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.
Resumo:
In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.
Resumo:
The autonomic nervous system maintains homeostasis, which is the state of balance in the body. That balance can be determined simply and noninvasively by evaluating heart rate variability (HRV). However, independently of autonomic control of the heart, HRV can be influenced by other factors, such as respiratory parameters. Little is known about the relationship between HRV and spirometric indices. In this study, our objective was to determine whether HRV correlates with spirometric indices in adults without cardiopulmonary disease, considering the main confounders (e.g., smoking and physical inactivity). In a sample of 119 asymptomatic adults (age 20-80 years), we evaluated forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). We evaluated resting HRV indices within a 5-min window in the middle of a 10-min recording period, thereafter analyzing time and frequency domains. To evaluate daily physical activity, we instructed participants to use a triaxial accelerometer for 7 days. Physical inactivity was defined as <150 min/week of moderate to intense physical activity. We found that FVC and FEV1, respectively, correlated significantly with the following aspects of the RR interval: standard deviation of the RR intervals (r =0.31 and 0.35), low-frequency component (r =0.38 and 0.40), and Poincaré plot SD2 (r =0.34 and 0.36). Multivariate regression analysis, adjusted for age, sex, smoking, physical inactivity, and cardiovascular risk, identified the SD2 and dyslipidemia as independent predictors of FVC and FEV1 (R2=0.125 and 0.180, respectively, for both). We conclude that pulmonary function is influenced by autonomic control of cardiovascular function, independently of the main confounders.
Resumo:
The yam (Discorea sp) is a tuber rich in carbohydrates, vitamins and mineral salts, besides several components that serve as raw material for medicines. It grows well in tropical and subtropical climates and develops well in zones with an annual pluvial precipitation of around 1300mm, and with cultural treatments, its productivity can exceed 30t/ha. When harvested, the tubers possess about 70% of moisture, and are merchandised "in natura", in the atmospheric temperature, which can cause its fast deterioration. The present work studied the drying of the yam in the form of slices of 1.0 and 2.5cm thickness, as well as in the form of fillets with 1.0 x 1.0 x 5.0cm, with the drying air varying from 40 to 70°C. The equating of the process was accomplished, allowing to simulate the drying as a function of the conditions of the drying air and of the initial and final moisture of the product. Also investigated was the expense of energy as function of the air temperature. The drying in the form of fillets, with the air in a temperature range between 45 and 50°C, was shown to be the most viable process when combining both the quality of the product and the expense of energy.
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
Osmotic dehydration is considered to be a suitable preprocessing step to reduce the water content of foods. Such products can be dried further by conventional drying processes to lower their water activity and thus extend their shelf life. In this work, banana (Musa sapientum) fruits were initially treated by osmosis by varying several parameters of the processing conditions which included, besides the cutting format (longitudinal and round slices) of the fruit, temperature (28 and 49 ºC), syrup concentration (50, 60 and 67 ºBrix), treatment time (2, 4, 6, 10, 14, 16 and 18 hours), fruit and syrup ratio (1:1, 1:2, 1:3 and 1:4) and agitation effects. The best quality products were obtained by the use of the 67 ºBrix syrup, for 60 minutes of osmotic treatment, at 28 ºC, having a fruit and syrup ratio of 1:1 and agitation. The experimental data obtained on reduction in moisture content during the osmotic treatment were correlated with the experimental equation of M/Mo = Ae(-Kt), where A and K are the constants which represent the geometry and effective diffusivity of the drying process. This simplified mathematical model correlated well with the experimental results.
Resumo:
In this study, the effect of the process variables of the air-drying of Sicilian lemon residues on some technological properties of the fibers produced was studied. The determination and modeling of desorption isotherms were used to establish the equilibrium moisture content at 60, 75, and 90 °C using the static method with 8 saturated salt solutions. The best fit was obtained with BET and GAB models. The drying process was conducted in a vertical tray dryer and delineated according to a central composite experimental design (2²) using the following as factors: air velocity (0.5, 0.75 and 1 m/s) and temperature (60, 75, and 90 °C), and it presented a good fit to the exponential model (R² > 99.9%). The experimental design responses evaluated were the technological properties of the fibers: water-holding, oil-holding, and swelling capacity. Since these properties were present in high levels, the lemon residues could be used to increase content of fibers in foods resulting in the addition of nutritional benefits for the consumers.