958 resultados para divalent cations
Resumo:
The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.
Resumo:
A new iron hydrogen phosphate, heptairon bis(phosphate) tetrakis(hydrogenphosphate), Fe-7(PO4)(2)(HPO4)(4), has been prepared hydrothermally and characterized by single-crystal X-ray diffraction. The compound has one Fe atom on an inversion centre and is isostructural with Mn-7(PO4)(2)(HPO4)(4) and Co-7(PO4)(2)(HPO4)(4). The structure is based on a framework of edge- and corner-sharing FeO6, Fe-5 and PO4 polyhedra, isotypic with that found in the mixed-valence iron phosphate Fe-7(PO4)(6). The Fe atoms in the title compound are purely in the divalent state, just like the Co atoms in Co-7(PO4)(2)(HPO4)(4), the necessary charge balance being maintained by the addition of H atoms in the form of bridging Fe-OH-P groups.
Resumo:
An unusual composite hybrid material [Co-4 (phen)(8) (H2O)(2) (HPO3)(2)](H3O)(3) [PMo8VI V-4(IV) O-40 ((VO)-O-IV) 2] 1 (phen = 1,10-phenanthroline) has been hydrothermally synthesized from a mixture of NH4VO3, Na2MoO4.2H(2)O, CoCl2.6H(2)O, phen, H3PO3 and water. It was characterized by elemental analysis, IR, UV-vis, XPS, EPR, TG and single crystal X-ray diffraction. The title compound is constructed from the organic-inorganic hybrid [Co-4(phen)(8)(H2O)(2) (HPO3)(2)](4+) and highly reduced bi-capped pseudo-Keggin [(PMo8V4O40)-V-VI-O-IV ((VO)-O-IV)(2)](7-) polyoxoanions The structure exhibits an extended 2D network through hydrogen bonds among cations, anions and H2O, combining polyoxometalates with metal phosphonates for the first time.
Resumo:
A novel manganese phosphomolybdate, [H3N(CH2)(4)NH3](H3O)(2){[Mn(phen)(2)](4)[(MnMovO30)-O-12(HPO4)(6)(H2PO4)(2)]} . 4H(2)O 1, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. The crystal data: triclinic, P (1) over bar, a = 14.172(7) Angstrom, b = 16.547(2) Angstrom, c = 16.679(3) Angstrom, alpha = 62.881(12)degrees, beta = 73.83(3)degrees, gamma = 88.81(3)degrees. X-ray crystallography shows that the [Mn(phen)(2)] fragments are covalently bonded to the [Mn(Mo6P4)(2)] dimers leading to a one-dimensional chain with rectangular cavities occupied by tetramethylene-diamine cations and water molecules. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The lipid layer membranes were fabricated on the glassy carbon electrode (GC) and demonstrated to be bilayer lipid membranes by impedance spectroscopy. The formation of incorporated poly L-glutamate bilayer lipid membrane was achieved. The ion channel behavior of the incorporated poly L-glutamate membrane was determined. When the stimulus calcium cations were added into the electrolyte, the ion channel was opened immediately and exhibited distinct channel current. Otherwise, the ion channel was closed. The cyclic voltammogram at the GC electrode coated with incorporated poly L-glutamate DMPC film response to calcium ion is very fast compared with that at the GC electrode coated only with DMPC film. Ion channel current is not dependent on the time but on the concentration of calcium. The mechanism of the ion channel formation was investigated.
Resumo:
PtCl62- anions were assembled on a glassy carbon electrode with [tetrakis(N-methylpyridyl)porphyrinato]cobalt cations through layer-by-layer method. then electrochemically reduced to yield zero valent Pt nanoparticles. Regular growth and surface morphology of the multilayer films were characterized by UV/vis. XPS and AFM.
Resumo:
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3](+) (MeGlyH(+)) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonlites [high-purity montmorillonite (MMT)-MeGlyH(+)] had larger interlayer spacing (12.69 Angstrom) than montmorillonites without treatment (9.65 Angstrom). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT-MeGlyH(+)] had much higher Zr loading and higher activities than those of' other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT-MeGlyH(+), Cp2ZrCl2/MAO/MMT, [CP2ZrCl](+)[BF4]/MMT, [Cp2ZrCl][BF4](-)/MMT-MeGlyH(+), [CP2ZrCl](+)[BF4](-)/MAO/MMT-MeGlyH(+), and [Cp2ZrCl](+)[BF4](-)/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (CP2ZrCl2/MAO/MMT-MeGlyH(1)). MeGlyH(+) and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed.
Resumo:
The influences of different cations on plasmid DNA network structures on a mica substrate were investigated by atomic force microscopy (AFM). Interactions between the DNA strands and mica substrate, and between the DNA strands themselves were more strongly influenced by the complex cations (Fe(phen)(3)(2+), Ni(phen)(3)(2+), and Co(phen)(3)(3+)) than by the simple cations (Mg2+, Mn2+, Ni2+, Ca2+, Co3+). The mesh height of the plasmid DNA network was higher when the complex cations were added to DNA samples. The mesh size decreased with increasing DNA concentration and increased with decreasing DNA concentration in the same cation solution sample. Hence, plasmid DNA network height can be controlled by selecting different cations, and the mesh size can be controlled by adjusting plasmid DNA concentration.
Resumo:
The local structure and the valences of europium in SrBPO5:Eu prepared in air were checked by means of XAFS at Eu-L-3 edge. From the EXAFS results, it was discovered that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.42 Angstrom in the host. From the XANES data, it was found that the divalent and trivalent europium coexisted in the matrix. The emission spectra excited by VUV or UV exhibited a prominent broad band due to the 4f(6)5d-4f(7) transition of Eu2+ ions, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Sr]" formed by aliovalent substitution between Sr2+ and Eu3+ ions. The VUV excitation spectra in 100-200 nm range showed that the matrix had absorption bands with the maxima at about 130 and 150 nm, respectively.
Resumo:
The title heteropoly blue, (Bu4N)(6)H-10 [(PMo11MoO40)-Mo-VI-O-V](4) . H2O has been photochemically synthesized and characterized with elemental analysis, solid diffusion reflectance electronic spectra, CV, ESR, XPS, IR spectra, conductivity measurement and X-ray single crystal analysis. The crystallographic data for C96H218Mo48N6O169P4 are as follows: M-r = 8889.76, triclinic, P (1) over bar, a = 1.4142 (3) nm, b = 2.6027 (5) nm, c = 2.6403(5) nm, alpha = 113.96(3)degrees, beta = 90.05(3)degrees, gamma = 105.71(3)degrees, V = 8.481 (3) nm(3), Z = 1, D-c = 1.741 g/cm(3), F (000) = 4264, mu = 1.798 mm(-1). The X-ray crystal structure analysis reveals that there Is one independent molecule in the unit cell of the title heteropoly blue which contains four mixed-valence heteropoly anions, six tetrabutylammonium cations and one water molecule. Its molecular structure possesses a centrosymmetrical arrangement in the unit cell. The phosphorus atom is In the crystallographic inversion center of the heteropoly anion and the eight oxygen atoms surrounding central phosphorus atom comprise of a distorted hexahedron. Heteropolyanion has two equal sets of PO4 tetrahedron. The PO4 tetrahedron and the MoO6 octahedron in the polyanion are greatly distorted.
Resumo:
Room-temperature ionic liquids are good solvents for a wide of organic, inorganic and organometallic compounds. Typically consisting of nitrogen-containing organic cations and inorganic anions, they are easy to recycle, nonflammable, and have no detectable vapor pressure. More recently, ionic liquids have been found to be excellent solvents for a number of chemical reactions, e. g. hydrogenation, alkylation, epoxidation, Heck-vinylation, Suzuki cross-coupling reactions and enzyme catalyzed organic reactions. This paper focuses on the recent development of using ionic liquids as solvents for transition metal and enzyme catalyzed reactions.
Resumo:
Oxyapatite NaY9Si6O26 was prepared by sol-gel method. By choosing the precursors, a single phase compound was obtained. This soft chemical method lowered the reaction temperature by 100degreesC compared with the solid state method. Its morphology was studied by transmission electron microscopy (TEM). Several rare earth ions (Eu3+, Tb3+, Dy3+) and Pb2+ ion were doped in this compound. The high resolution emission spectrum of Eu3+ showed that rare earth ions occupied two yttrium sites. In spite of the charge imbalance of Pb2+ with the cations in this compound, it was found that Pb2+ could emit in UV range and transfer its excitation energy to Dy3+ ion.
Resumo:
A functionalized fullerene derivative containing a monoaza-18-crown-6 moiety was investigated by facilitated ion (such as Li+, Na+, K+, NH4+, Mg2+, and Ca2+) transfer across the micro-water/nitrobenzene interface supported at the tip of a micropipet. The current responses were detected by cyclic voltammetry and Osteryoung square wave voltammetry, which demonstrated that the facilitated ion transfer does occur by an interfacial complexation-dissociation process. The diffusion coefficient of this compound in nitrobenzene was approximately (5.90 +/- 0.04) x 10(-7) cm(2) s(-1), which is 1 order of magnitude less than other common ionophores due to the large size of the molecule. The selectivity of this molecule toward the metal ions followed the sequence Na+ > Li+ > K+ > NH4+ > Ca2+ similar to Mg2+. In addition, this compound was also easy to form film at the water/nitrobenzene interface to inhibit the simple ion transfer of tetramethylammonium ion. However, the adsorption of this ionophore has less influence on the facilitated metal ion transfer.
Resumo:
A novel organic-inorganic hybrid compound {[Cu (2, 2'-bpy)(2)](2)Mo8O26} has been hydrothermally Synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group, Pna2(1), with a=2.4164 (5), b=1.8281 (4), c=1.1877 (2) nm, V=5.247(2) nm(3), Z=4, and final R-1=0.0331, wR(2)=0.0727. The structure consists of discrete {[Cu(2,2'-bpy)(2)](2)Mo8O26} clusters, constructed from a beta -octamolybdate subunit[Mo8O26](4-) covalently bonded to two [Cu(2,2'-bpy)(2)](2+) coordination complex cations via bridging oxo groups. In addition, the spectroscopic properties and thermal behavior of this compound have been investigated by spectroscopic techniques (UV-vis, IR, Raman and EPR spectra) and TG analysis.
Resumo:
The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.