895 resultados para discriminant analysis and cluster analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under the worst-case conditions and to make the appropriate design choices. This is particular relevant for time-sensitive WSN applications, where the timing behavior of the network protocols (message transmission must respect deadlines) impacts on the correct operation of these applications. In that direction this paper contributes with a methodology based on Network Calculus, which enables quick and efficient worst-case dimensioning of static or even dynamically changing cluster-tree WSNs where the data sink can either be static or mobile. We propose closed-form recurrent expressions for computing the worst-case end-to-end delays, buffering and bandwidth requirements across any source-destination path in a cluster-tree WSN. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study using commercially available technology, namely TelosB motes running TinyOS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mannans (linear mannan, glucomannan, galactomannan and galactoglucomannan) are the major constituents of the hemicellulose fraction in softwoods and show great importance as a renewable resource for fuel or feedstock applications. As complex polysaccharides, mannans can only be degraded through a synergistic action of different mannan-degrading enzymes, mannanases. Microbial mannanases are mainly extracellular enzymes that can act in wide range of pH and temperature, contributing to pulp and paper, pharmaceutical, food and feed, oil and textile successful industrial applications. Knowing and controlling these microbial mannan-degrading enzymes are essential to take advantage of their great biotechnological potential. The genome of the laboratory 168 strain of Bacillus subtilis carries genes gmuA-G dedicated to the degradation and utilization of glucomannan, including an extracellular -mannanase. Recently, the genome sequence of an undomesticated strain of B. subtilis, BSP1, was determined. In BSP1, the gmuA-G operon is maintained, interestingly, however, a second cluster of genes was found (gam cluster), which comprise a second putative extracellular β-mannanase, and most likely specify a system for the degradation and utilization of a different mannan polymer, galactoglucomannan. The genetic organization and function of the gam cluster, and whether its presence in BSP1 strain results in new hemicellulolytic capabilities, compared to those of the laboratory strain, was address in this work. In silico and in vivo mRNA analyses performed in this study revealed that the gam cluster, comprising nine genes, is organized and expressed in at least six different transcriptional units. Furthermore, cloning, expression, and production of Bbsp2923 in Escherichia coli was achieved and preliminary characterization shows that the enzyme is indeed a β-mannanase. Finally, the high hemicellulolytic capacity of the undomesticated B. subtilis BSP1, demonstrated in this work by qualitative analyses, suggests potential to be used in the food and feed industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile.Methods: We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis. Results: Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits. Conclusions: Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of Discriminant function analysis (DFA) is not a new idea in the studyof tephrochrology. In this paper, DFA is applied to compositional datasets of twodifferent types of tephras from Mountain Ruapehu in New Zealand and MountainRainier in USA. The canonical variables from the analysis are further investigated witha statistical methodology of change-point problems in order to gain a betterunderstanding of the change in compositional pattern over time. Finally, a special caseof segmented regression has been proposed to model both the time of change and thechange in pattern. This model can be used to estimate the age for the unknown tephrasusing Bayesian statistical calibration

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: In 2011, a patient was admitted to our hospital with acute schistosomiasis after having returned from Madagascar and having bathed at the Lily waterfalls. On the basis of this patient's indication, infection was suspected in 41 other subjects. This study investigated (1) the knowledge of the travelers about the risks of schistosomiasis and their related behavior to evaluate the appropriateness of prevention messages and (2) the diagnostic workup of symptomatic travelers by general practitioners to evaluate medical care of travelers with a history of freshwater exposure in tropical areas. METHODS: A questionnaire was sent to the 42 travelers with potential exposure to schistosomiasis. It focused on pre-travel knowledge of the disease, bathing conditions, clinical presentation, first suspected diagnosis, and treatment. RESULTS: Of the 42 questionnaires, 40 (95%) were returned, among which 37 travelers (92%) reported an exposure to freshwater, and 18 (45%) were aware of the risk of schistosomiasis. Among these latter subjects, 16 (89%) still reported an exposure to freshwater. Serology was positive in 28 (78%) of 36 exposed subjects at least 3 months after exposure. Of the 28 infected travelers, 23 (82%) exhibited symptoms and 16 (70%) consulted their general practitioner before the information about the outbreak had spread, but none of these patients had a serology for schistosomiasis done during the first consultation. CONCLUSIONS: The usual prevention message of avoiding freshwater contact when traveling in tropical regions had no impact on the behavior of these travelers, who still went swimming at the Lily waterfalls. This prevention message should, therefore, be either modified or abandoned. The clinical presentation of acute schistosomiasis is often misleading. General practitioners should at least request an eosinophil count, when confronted with a returning traveler with fever. If eosinophilia is detected, it should prompt the search for a parasitic disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of Discriminant function analysis (DFA) is not a new idea in the study of tephrochrology. In this paper, DFA is applied to compositional datasets of two different types of tephras from Mountain Ruapehu in New Zealand and Mountain Rainier in USA. The canonical variables from the analysis are further investigated with a statistical methodology of change-point problems in order to gain a better understanding of the change in compositional pattern over time. Finally, a special case of segmented regression has been proposed to model both the time of change and the change in pattern. This model can be used to estimate the age for the unknown tephras using Bayesian statistical calibration

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: A primary characteristic of complex genetic diseases is that affected individuals tend to cluster in families (that is, familial aggregation). Aggregation of the same autoimmune condition, also referred to as familial autoimmune disease, has been extensively evaluated. However, aggregation of diverse autoimmune diseases, also known as familial autoimmunity, has been overlooked. Therefore, a systematic review and meta-analysis were performed aimed at gathering evidence about this topic. Methods: Familial autoimmunity was investigated in five major autoimmune diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid disease, multiple sclerosis and type 1 diabetes mellitus. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed. Articles were searched in Pubmed and Embase databases. Results: Out of a total of 61 articles, 44 were selected for final analysis. Familial autoimmunity was found in all the autoimmune diseases investigated. Aggregation of autoimmune thyroid disease, followed by systemic lupus erythematosus and rheumatoid arthritis, was the most encountered. Conclusions: Familial autoimmunity is a frequently seen condition. Further study of familial autoimmunity will help to decipher the common mechanisms of autoimmunity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Medication errors are common in primary care and are associated with considerable risk of patient harm. We tested whether a pharmacist-led, information technology-based intervention was more effective than simple feedback in reducing the number of patients at risk of measures related to hazardous prescribing and inadequate blood-test monitoring of medicines 6 months after the intervention. Methods: In this pragmatic, cluster randomised trial general practices in the UK were stratified by research site and list size, and randomly assigned by a web-based randomisation service in block sizes of two or four to one of two groups. The practices were allocated to either computer-generated simple feedback for at-risk patients (control) or a pharmacist-led information technology intervention (PINCER), composed of feedback, educational outreach, and dedicated support. The allocation was masked to general practices, patients, pharmacists, researchers, and statisticians. Primary outcomes were the proportions of patients at 6 months after the intervention who had had any of three clinically important errors: non-selective non-steroidal anti-inflammatory drugs (NSAIDs) prescribed to those with a history of peptic ulcer without co-prescription of a proton-pump inhibitor; β blockers prescribed to those with a history of asthma; long-term prescription of angiotensin converting enzyme (ACE) inhibitor or loop diuretics to those 75 years or older without assessment of urea and electrolytes in the preceding 15 months. The cost per error avoided was estimated by incremental cost-eff ectiveness analysis. This study is registered with Controlled-Trials.com, number ISRCTN21785299. Findings: 72 general practices with a combined list size of 480 942 patients were randomised. At 6 months’ follow-up, patients in the PINCER group were significantly less likely to have been prescribed a non-selective NSAID if they had a history of peptic ulcer without gastroprotection (OR 0∙58, 95% CI 0∙38–0∙89); a β blocker if they had asthma (0∙73, 0∙58–0∙91); or an ACE inhibitor or loop diuretic without appropriate monitoring (0∙51, 0∙34–0∙78). PINCER has a 95% probability of being cost eff ective if the decision-maker’s ceiling willingness to pay reaches £75 per error avoided at 6 months. Interpretation: The PINCER intervention is an effective method for reducing a range of medication errors in general practices with computerised clinical records. Funding: Patient Safety Research Portfolio, Department of Health, England.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in US landfalling systems. Here we present a tentative study, which examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1° to 0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and sub-tropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity and power dissipation index in each cluster are documented for both configurations. Our results show that except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. We also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, we examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex biological systems require sophisticated approach for analysis, once there are variables with distinct measure levels to be analyzed at the same time in them. The mouse assisted reproduction, e.g. superovulation and viable embryos production, demand a multidisciplinary control of the environment, endocrinologic and physiologic status of the animals, of the stressing factors and the conditions which are favorable to their copulation and subsequently oocyte fertilization. In the past, analyses with a simplified approach of these variables were not well succeeded to predict the situations that viable embryos were obtained in mice. Thereby, we suggest a more complex approach with association of the Cluster Analysis and the Artificial Neural Network to predict embryo production in superovulated mice. A robust prediction could avoid the useless death of animals and would allow an ethic management of them in experiments requiring mouse embryo.