927 resultados para discrete equilibrium
Resumo:
A rheological model of sea ice is presented that incorporates the orientational distribution of ice thickness in leads embedded in isotropic floe ice. Sea ice internal stress is determined by coulombic, ridging and tensile failure at orientations where corresponding failure criteria are satisfied at minimum stresses. Because sea ice traction increases in thinner leads and cohesion is finite, such failure line angles are determined by the orientational distribution of sea ice thickness relative to the imposed stresses. In contrast to the isotropic case, sea ice thickness anisotropy results in these failure lines becoming dependent on the stress magnitude. Although generally a given failure criteria type can be satisfied at many directions, only two at most are considered. The strain rate is determined by shearing along slip lines accompanied by dilatancy and closing or opening across orientations affected by ridging or tensile failure. The rheology is illustrated by a yield curve determined by combining coulombic and ridging failure for the case of two pairs of isotropically formed leads of different thicknesses rotated with regard to each other, which models two events of coulombic failure followed by dilatancy and refreezing. The yield curve consists of linear segments describing coulombic and ridging yield as failure switches from one lead to another as the stress grows. Because sliding along slip lines is accompanied by dilatancy, at typical Arctic sea ice deformation rates a one-day-long deformation event produces enough open water that these freshly formed slip lines are preferential places of ridging failure.
Resumo:
We present a new Bayesian econometric specification for a hypothetical Discrete Choice Experiment (DCE) incorporating respondent ranking information about attribute importance. Our results indicate that a DCE debriefing question that asks respondents to rank the importance of attributes helps to explain the resulting choices. We also examine how mode of survey delivery (online and mail) impacts model performance, finding that results are not substantively a§ected by the mode of survey delivery. We conclude that the ranking data is a complementary source of information about respondent utility functions within hypothetical DCEs
Resumo:
To examine the long-term stability of Arctic and Antarctic sea ice, idealized simulations are carried out with the climate model ECHAM5/MPIOM. Atmospheric CO2 concentration is increased over 2000 years from pre-industrial levels to quadrupling, is then kept constant for 5940 years, is afterwards decreased over 2000 years to pre-industrial levels, and finally kept constant for 3940 years.Despite these very slow changes, the sea-ice response significantly lags behind the CO2 concentration change. This lag, which is caused by the ocean’s thermal inertia, implies that the sea-ice equilibrium response to increasing CO2 concentration is substantially underestimated by transient simulations. The sea-ice response to CO2 concentration change is not truly hysteretic and in principle reversible.We find no lag in the evolution of Arctic sea ice relative to changes in annual-mean northern-hemisphere surface temperature. The summer sea-ice cover changes linearly with respect to both CO2 concentration and temper...
Resumo:
Changes of the equilibrium-line altitude (ELA) since the end of the Little Ice Age (LIA) in eastern Nepal have been studied using glacier inventory data. The toe-to-headwall altitude ratios (THARs) for individual glaciers were calculated for 1992, and used to estimate the ELA in 1959 and at the end of the LIA. THAR for debris-free glaciers is found to be smaller than for debris-covered glaciers. The ELAs for debris-covered glaciers are higher than those for debris-free glaciers in eastern Nepal. There is considerable variation in the reconstructed change in ELA (ΔELA) between glaciers within specific regions and between regions. This is not related to climate gradients, but results from differences in glacier aspect: southeast- and south-facing glaciers show larger ΔELAs in eastern Nepal than north- or west-facing glaciers. The data suggest that the rate of ELA rise may have accelerated in the last few decades. The limited number of climate records from Nepal, and analyses using a simple ELA–climate model, suggest that the higher rate of the ΔELA between 1959 and 1992 is a result of increased warming that occurred after the 1970s at higher altitudes in Nepal.
Resumo:
In this paper we investigate the equilibrium properties of magnetic dipolar (ferro-) fluids and discuss finite-size effects originating from the use of different boundary conditions in computer simulations. Both periodic boundary conditions and a finite spherical box are studied. We demonstrate that periodic boundary conditions and subsequent use of Ewald sum to account for the long-range dipolar interactions lead to a much faster convergence (in terms of the number of investigated dipolar particles) of the magnetization curve and the initial susceptibility to their thermodynamic limits. Another unwanted effect of the simulations in a finite spherical box geometry is a considerable sensitivity to the container size. We further investigate the influence of the surface term in the Ewald sum-that is, due to the surrounding continuum with magnetic permeability mu(BC)-on the convergence properties of our observables and on the final results. The two different ways of evaluating the initial susceptibility, i.e., (1) by the magnetization response of the system to an applied field and (2) by the zero-field fluctuation of the mean-square dipole moment of the system, are compared in terms of speed and accuracy.
Resumo:
We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferrosolids the observed susceptibility is considerably lowered when compared to ferrofluids.
Resumo:
Langevin dynamics simulations are used to investigate the equilibrium magnetization properties and structure of magnetic dipolar fluids. The influence of using different boundary conditions are systematically studied. Simulation results on the initial susceptibility and magnetization curves are compared with theoretical predictions. The effect of particle aggregation is discussed in detail by performing a cluster analysis of the microstructure.
Resumo:
The “cotton issue” has been a topic of several academic discussions for trade policy analysts. However the design of trade and agricultural policy in the EU and the USA has become a politically sensitive matter throughout the last five years. This study utilizing the Agricultural Trade Policy Simulation Model (ATPSM) aims to gain insights into the global cotton market, to explain why domestic support for cotton has become an issue, to quantify the impact of the new EU agricultural policy on the cotton sector, and to measure the effect of eliminating support policies on production and trade. Results indicate that full trade liberalization would lead the four West African countries to better terms of trade with the EU. If tariff reduction follows the so-called Swiss formula, world prices would increase by 3.5%.
Resumo:
Ionospheric plasma flow measurements and simultaneous observations of thin (∼0.2° invariant latitude (ILAT)), multiple, longitudinally extended auroral arcs of transient nature within 74°-76° ILAT and 1030-1130 UT (∼14-15 MLT) on January 12, 1989, are reported. The auroral structures appeared within the luminous belt of strong 630.0-nm emissions located predominantly on sunward convecting field lines equatorward of the convection reversal boundary as identified by the European Incoherent Scatter UHF radar. The events occurred during a period of several hours quasi-steady solar wind speed (∼ 700 km s−1) and a radially orientated interplanetary magnetic field (IMF) with a weak northward tilt (IMF Bz>0). These typical dayside auroral features are related to previous studies of auroral activity related to the upward region 1 current in the postnoon sector. The discrete auroral events presented here may result from magnetosheath plasma injections into the low-latitude boundary layer (LLBL) and an associated dynamo mechanism. An alternative explanation invokes kinetic Alfvén waves, triggered either by Kelvin-Helmholtz instability at the inner (or outer) edge of the LLBL or by pressure pulse induced magnetopause surface waves.
Resumo:
A method for the detection of O+ ion fluxes from topside soundings is described. The shape of the plasma scale-height profile is altered by such flows only at heights near the F2-peak, where ion-neutral drag is large. Model profiles are used to relate changes in scale height to the ratio (φ/φL) where φ is the field-aligned O+ flux (relative to the neutral air) and φL is the limiting value set by frictional drag. Values of (φ/φL) can then be determined to within a few per cent from experimental soundings, using the plasma temperature and its gradient (as deduced from the observed profile) and the MSIS model neutral temperature. It was found that 3700 topside profiles show departures from diffusive equilibrium, out of 10,000 used to obtain the global morphology of (φ/φL) near the sunspot minimum. Results reveal dynamic ion-flow effects such as the transequatorial breeze and the effects of the polar wind and protonospheric replenishment light-ion flows can be inferred.
Resumo:
This article proposes an auction model where two firms compete for obtaining the license for a public project and an auctioneer acting as a public official representing the political power, decides the winner of the contest. Players as firms face a social dilemma in the sense that the higher is the bribe offered, the higher would be the willingness of a pure monetary maximizer public official to give her the license. However, it implies inducing a cost of reducing all players’ payoffs as far as our model includes an endogenous externality, which depends on bribe. All players’ payoffs decrease with the bribe (and increase with higher quality). We find that the presence of bribe aversion in either the officials’ or the firms’ utility function shifts equilibrium towards more pro-social behavior. When the quality and bribe-bid strategy space is discrete, multiple equilibria emerge including more pro-social bids than would be predicted under a continuous strategy space.
Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective
Resumo:
We study discontinuous Galerkin approximations of the p-biharmonic equation for p∈(1,∞) from a variational perspective. We propose a discrete variational formulation of the problem based on an appropriate definition of a finite element Hessian and study convergence of the method (without rates) using a semicontinuity argument. We also present numerical experiments aimed at testing the robustness of the method.
Resumo:
Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η =
Resumo:
A supramolecular polymer based upon two complementary polymer components is formed by sequential deposition from solution in THF, using a piezoelectric drop-on-demand inkjet printer. Highly efficient cycloaddition or ‘click’ chemistry afforded a well-defined poly(ethylene glycol) featuring chain-folding diimide end groups, which possesses greatly enhanced solubility in THF relative to earlier materials featuring random diimide sequences. Blending the new polyimide with a complementary poly(ethylene glycol) system bearing pyrene end groups (which bind to the chain-folding diimide units) overcomes the limited solubility encountered previously with chain-folding polyimides in inkjet printing applications. The solution state properties of the resulting polymer blend were assessed via viscometry to confirm the presence of a supramolecular polymer before depositing the two electronically complementary polymers by inkjet printing techniques. The novel materials so produced offer an insight into ways of controlling the properties of printed materials through tuning the structure of the polymer at the (supra)molecular level.