903 resultados para diet zinc
Resumo:
Dins dels processos de recuperació de metalls de dissolucions diluïdes s'ha realitzat un estudi del procés d'extracció d'or i de zinc mitjançant resines amberlite XAD-2 impregnades amb sulfur de triisobutil fosfina (TIBPS) i àcid di-(2-etilhexil) fosfòric (DEHPA) respectivament. S'ha realitzat un estudi de l'equilibri de l'adsorció d'espècies metàl·liques d'aquests metalls amb les resines indicades anteriorment. Amb la metodologia emprada per a la determinació dels punts d'equilibri dels experiments en batch i en columna, s'ha vist que una única isoterma no podia descriure el fenomen global d'equilibri i que en funció de la metodologia emprada s'obtenien isotermes diferents. Es va introduir una nova variable per poder explicar el fenomen observat, i per tant, amb aquesta nova variable l'equació de la isoterma es converteix amb l'equació d'una supèrfície que s'ha definit com a Superfície d'Equilibri. S'han determinat les equacions de les Suprfícies d'Equilibri dels sistemes d'adsorció estudiats (Au(III) TIBPS/XAD-2 i Zn(II) DEHPA/XAD-2) observan una bona coincidència de tots els punts d'equilibri obtinguts sobre la superfície, així com, un bon ajust de totes les isotermes obtingudes en funció de les diferents metodologies emprades sobre les respectives superfícies d'equilibri. Aquest nou concepte generalitza el concepte d'isoterma d'un procés d'adsorció. Fimalment, s'ha plantejat un model matemàtic d'adsorció per a determinar el coeficient efectiu de difusió (De) i el coeficient de transferància de matèria (kf) per ambdós sistemes d'adsorció estudiats mitjançant l'aplicació del model de difusió de sòlid homogeni (HSDM), utilitzant com a condició de contorn en el model la isoterma de Langmuir obtinguda mitjançant els experiments en columna de llit fix i emprant també l'equació obtinguda mitjançant el nou concepte de Superfície d'Equilibri. Els resultats obtinguts són molt satisfactoris, per tant, es pot concloure que la Superfície d'Equilibri és una bona eina per a descriure l'equilibri en els processos d'adsorció d'or i zinc amb les resines amberlite XAD-2 impregnades amb TIBPS i DEHPA respectivament.
Resumo:
Stable isotopes get personal in this analysis of burials at a medieval cathedral. Compared with the local meat-eating rank and file, those people identified as bishops consumed significantly more fish and were incomers from the east. These results, while not so surprising historically, lend much increased confidence that isotope analysis can successfully read the status and mobility of individuals in a cemetery.
Resumo:
This study examines the food-chain transfer of Zn from two plant species, Urtica dioica (stinging nettle) and Acer pseudoplatanus (sycamore maple), into their corresponding aphid species, Microlophium carnosum and Drepanosiphum platanoidis. The plants were grown in a hydroponic system using solutions with increasing concentrations of Zn from 0.02 to 41.9 mg Zn/l. Above-ground tissue concentrations in U. dioica and M. carnosum increased with increasing Zn exposure (p < 0.001). Zn concentrations in A. pseudoplatanus also increased with solution concentration from the control to the 9.8 mg Zn/l solution, above which concentrations remained constant. Zn concentrations in both D. platanoidis and the phloem tissue of A. pseudoplatanus were not affected by the Zn concentration in the watering solution. It appears that A. pseudoplatanus was able to limit Zn transport in the phloem, resulting in constant Zn exposure to the aphids. Zn concentrations in D. platanoidis were around three times those in M. carnosum. Concentrations of Zn in two aphid species are dependant on species and exposure.
Resumo:
As zinc (Zn) is both an essential trace element and potential toxicant, the effects of Zn fixation in soil are of practical significance. Soil samples from four field sites amended with ZnSO4 were used to investigate ageing of soluble Zn under field conditions over a 2-year period. Lability of Zn measured using 65Zn radioisotope dilution showed a significant decrease over time and hence evidence of Zn fixation in three of the four soils. However, 0.01 M CaCl2 extractions and toxicity measurements using a genetically modified lux-marked bacterial biosensor did not indicate a decrease in soluble/bioavailable Zn over time. This was attributed to the strong regulatory effect of abiotic properties such as pH on these latter measurements. These results also showed that Zn ageing occurred immediately after Zn spiking, emphasising the need to incubate freshly spiked soils before ecotoxicity assessments. Ageing effects were detected in Zn-amended field soils using 65Zn isotopic dilution as a measure of lability, but not with either CaCl2 extractions or a lux-marked bacterial biosensor.
Resumo:
Zinc deficiency is the most ubiquitous micronutrient deficiency problem in world crops. Zinc is essential for both plants and animals because it is a structural constituent and regulatory co-factor in enzymes and proteins involved in many biochemical pathways. Millions of hectares of cropland are affected by Zn deficiency and approximately one-third of the human population suffers from an inadequate intake of Zn. The main soil factors affecting the availability of Zn to plants are low total Zn contents, high pH, high calcite and organic matter contents and high concentrations of Na, Ca, Mg, bicarbonate and phosphate in the soil solution or in labile forms. Maize is the most susceptible cereal crop, but wheat grown on calcareous soils and lowland rice on flooded soils are also highly prone to Zn deficiency. Zinc fertilizers are used in the prevention of Zn deficiency and in the biofortification of cereal grains.
Resumo:
In this field experiment, sewage sludge was applied at 0, 5, 10, and 50 t ha(-1), and the availability of Cd, Ni, Pb, and Zn was assessed both by ryegrass uptake and by DTPA extractions. The aim was to investigate the role of important soil parameters, particularly pH, on heavy metal availability. It was found that metal uptake and extractability increased significantly in the 50 t ha(-1) treatment. In the 16th week of the experiment there was a significant, although temporary, increase in DTPA-extractable Cd, Ni, and Zn concentrations. Metal concentrations in ryegrass were also significantly elevated in week 20 compared to the subsequent cuttings. These fluctuations in both DTPA and ryegrass uptake occurred only at 50 t ha(-1) and were probably induced by a sudden pH decrease measured in the same treatment in week 16. This suggests that soils which have received high applications of sewage sludge may be prone to fluctuations in metal availability. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A soil (sandy loam) column leaching study aimed to determine the extent of mobility and co-mobility of Cu, Ni, Zn and dissolved organic matter (DOM) released from a surface-application (equivalent to 50 t ds ha(-1)) of anaerobically-digested sewage sludge. Leaching of DOM through It the soil column was found to be almost un-retarded. Decidedly similar behaviour was exhibited by Ni suggesting that it migrated as organic complexes. Whilst Cu was also found to be leached, significant retardation was evident. However, the importance of DOM in promoting the mobility of both Cu and Ni was evidenced by their lack of mobility when added to the soil column as inorganic forms. The presence of DOM did not prevent Zn from becoming completely adsorbed by the soil solid phase. In relation to WHO drinking water guidelines, only Ni concentrations showed potential environmental significance. due to the relatively poor retention of Ni by the sludge solid phase. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The adsorption of nutrient elements is one of the most important solid- and liquid-phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3 , organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r(2) values for the Langmuir isotherm were highly significant (r(2) =0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.