824 resultados para decentralised data fusion framework


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of semantic and Linked Data technologies for Enterprise Application Integration (EAI) is increasing in recent years. Linked Data and Semantic Web technologies such as the Resource Description Framework (RDF) data model provide several key advantages over the current de-facto Web Service and XML based integration approaches. The flexibility provided by representing the data in a more versatile RDF model using ontologies enables avoiding complex schema transformations and makes data more accessible using Web standards, preventing the formation of data silos. These three benefits represent an edge for Linked Data-based EAI. However, work still has to be performed so that these technologies can cope with the particularities of the EAI scenarios in different terms, such as data control, ownership, consistency, or accuracy. The first part of the paper provides an introduction to Enterprise Application Integration using Linked Data and the requirements imposed by EAI to Linked Data technologies focusing on one of the problems that arise in this scenario, the coreference problem, and presents a coreference service that supports the use of Linked Data in EAI systems. The proposed solution introduces the use of a context that aggregates a set of related identities and mappings from the identities to different resources that reside in distinct applications and provide different views or aspects of the same entity. A detailed architecture of the Coreference Service is presented explaining how it can be used to manage the contexts, identities, resources, and applications which they relate to. The paper shows how the proposed service can be utilized in an EAI scenario using an example involving a dashboard that integrates data from different systems and the proposed workflow for registering and resolving identities. As most enterprise applications are driven by business processes and involve legacy data, the proposed approach can be easily incorporated into enterprise applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a description of our system for the Albayzin 2012 LRE competition. One of the main characteristics of this evaluation was the reduced number of available files for training the system, especially for the empty condition where no training data set was provided but only a development set. In addition, the whole database was created from online videos and around one third of the training data was labeled as noisy files. Our primary system was the fusion of three different i-vector based systems: one acoustic system based on MFCCs, a phonotactic system using trigrams of phone-posteriorgram counts, and another acoustic system based on RPLPs that improved robustness against noise. A contrastive system that included new features based on the glottal source was also presented. Official and postevaluation results for all the conditions using the proposed metrics for the evaluation and the Cavg metric are presented in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the OECD/NEA project on Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety Analysis of LWRs, several approaches and codes are being used to deal with the exercises proposed in Phase I, “Specifications and Support Data for Neutronics Cases.” At UPM, our research group treats these exercises with sensitivity calculations and the “sandwich formula” to propagate cross-section uncertainties. Two different codes are employed to calculate the sensitivity coefficients of to cross sections in criticality calculations: MCNPX-2.7e and SCALE-6.1. The former uses the Differential Operator Technique and the latter uses the Adjoint-Weighted Technique. In this paper, the main results for exercise I-2 “Lattice Physics” are presented for the criticality calculations of PWR. These criticality calculations are done for a TMI fuel assembly at four different states: HZP-Unrodded, HZP-Rodded, HFP-Unrodded, and HFP-Rodded. The results of the two different codes above are presented and compared. The comparison proves a good agreement between SCALE-6.1 and MCNPX-2.7e in uncertainty that comes from the sensitivity coefficients calculated by both codes. Differences are found when the sensitivity profiles are analysed, but they do not lead to differences in the uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework specially designed to deal with structurally complex data, where all individuals have the same structure, as is the case in many medical domains. A structurally complex individual may be composed of any type of singlevalued or multivalued attributes, including time series, for example. These attributes are structured according to domain-dependent hierarchies. Our aim is to generate reference models of population groups. These models represent the population archetype and are very useful for supporting such important tasks as diagnosis, detecting fraud, analyzing patient evolution, identifying control groups, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology- Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-Performance Computing, Cloud computing and next-generation applications such e-Health or Smart Cities have dramatically increased the computational demand of Data Centers. The huge energy consumption, increasing levels of CO2 and the economic costs of these facilities represent a challenge for industry and researchers alike. Recent research trends propose the usage of holistic optimization techniques to jointly minimize Data Center computational and cooling costs from a multilevel perspective. This paper presents an analysis on the parameters needed to integrate the Data Center in a holistic optimization framework and leverages the usage of Cyber-Physical systems to gather workload, server and environmental data via software techniques and by deploying a non-intrusive Wireless Sensor Net- work (WSN). This solution tackles data sampling, retrieval and storage from a reconfigurable perspective, reducing the amount of data generated for optimization by a 68% without information loss, doubling the lifetime of the WSN nodes and allowing runtime energy minimization techniques in a real scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective Distributed Denial of Service (DDoS) defense mechanism must guarantee legitimate users access to an Internet service masking the effects of possible attacks. That is, it must be able to detect threats and discard malicious packets in a online fashion. Given that emerging data streaming technology can enable such mitigation in an effective manner, in this paper we present STONE, a stream-based DDoS defense framework, which integrates anomaly-based DDoS detection and mitigation with scalable data streaming technology. With STONE, the traffic of potential targets is analyzed via continuous data streaming queries maintaining information used for both attack detection and mitigation. STONE provides minimal degradation of legitimate users traffic during DDoS attacks and it also faces effectively flash crowds. Our preliminary evaluation based on an implemented prototype and conducted with real legitimate and malicious traffic traces shows that STONE is able to provide fast detection and precise mitigation of DDoS attacks leveraging scalable data streaming technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una apropiada evaluación de los márgenes de seguridad de una instalación nuclear, por ejemplo, una central nuclear, tiene en cuenta todas las incertidumbres que afectan a los cálculos de diseño, funcionanmiento y respuesta ante accidentes de dicha instalación. Una fuente de incertidumbre son los datos nucleares, que afectan a los cálculos neutrónicos, de quemado de combustible o activación de materiales. Estos cálculos permiten la evaluación de las funciones respuesta esenciales para el funcionamiento correcto durante operación, y también durante accidente. Ejemplos de esas respuestas son el factor de multiplicación neutrónica o el calor residual después del disparo del reactor. Por tanto, es necesario evaluar el impacto de dichas incertidumbres en estos cálculos. Para poder realizar los cálculos de propagación de incertidumbres, es necesario implementar metodologías que sean capaces de evaluar el impacto de las incertidumbres de estos datos nucleares. Pero también es necesario conocer los datos de incertidumbres disponibles para ser capaces de manejarlos. Actualmente, se están invirtiendo grandes esfuerzos en mejorar la capacidad de analizar, manejar y producir datos de incertidumbres, en especial para isótopos importantes en reactores avanzados. A su vez, nuevos programas/códigos están siendo desarrollados e implementados para poder usar dichos datos y analizar su impacto. Todos estos puntos son parte de los objetivos del proyecto europeo ANDES, el cual ha dado el marco de trabajo para el desarrollo de esta tesis doctoral. Por tanto, primero se ha llevado a cabo una revisión del estado del arte de los datos nucleares y sus incertidumbres, centrándose en los tres tipos de datos: de decaimiento, de rendimientos de fisión y de secciones eficaces. A su vez, se ha realizado una revisión del estado del arte de las metodologías para la propagación de incertidumbre de estos datos nucleares. Dentro del Departamento de Ingeniería Nuclear (DIN) se propuso una metodología para la propagación de incertidumbres en cálculos de evolución isotópica, el Método Híbrido. Esta metodología se ha tomado como punto de partida para esta tesis, implementando y desarrollando dicha metodología, así como extendiendo sus capacidades. Se han analizado sus ventajas, inconvenientes y limitaciones. El Método Híbrido se utiliza en conjunto con el código de evolución isotópica ACAB, y se basa en el muestreo por Monte Carlo de los datos nucleares con incertidumbre. En esta metodología, se presentan diferentes aproximaciones según la estructura de grupos de energía de las secciones eficaces: en un grupo, en un grupo con muestreo correlacionado y en multigrupos. Se han desarrollado diferentes secuencias para usar distintas librerías de datos nucleares almacenadas en diferentes formatos: ENDF-6 (para las librerías evaluadas), COVERX (para las librerías en multigrupos de SCALE) y EAF (para las librerías de activación). Gracias a la revisión del estado del arte de los datos nucleares de los rendimientos de fisión se ha identificado la falta de una información sobre sus incertidumbres, en concreto, de matrices de covarianza completas. Además, visto el renovado interés por parte de la comunidad internacional, a través del grupo de trabajo internacional de cooperación para evaluación de datos nucleares (WPEC) dedicado a la evaluación de las necesidades de mejora de datos nucleares mediante el subgrupo 37 (SG37), se ha llevado a cabo una revisión de las metodologías para generar datos de covarianza. Se ha seleccionando la actualización Bayesiana/GLS para su implementación, y de esta forma, dar una respuesta a dicha falta de matrices completas para rendimientos de fisión. Una vez que el Método Híbrido ha sido implementado, desarrollado y extendido, junto con la capacidad de generar matrices de covarianza completas para los rendimientos de fisión, se han estudiado diferentes aplicaciones nucleares. Primero, se estudia el calor residual tras un pulso de fisión, debido a su importancia para cualquier evento después de la parada/disparo del reactor. Además, se trata de un ejercicio claro para ver la importancia de las incertidumbres de datos de decaimiento y de rendimientos de fisión junto con las nuevas matrices completas de covarianza. Se han estudiado dos ciclos de combustible de reactores avanzados: el de la instalación europea para transmutación industrial (EFIT) y el del reactor rápido de sodio europeo (ESFR), en los cuales se han analizado el impacto de las incertidumbres de los datos nucleares en la composición isotópica, calor residual y radiotoxicidad. Se han utilizado diferentes librerías de datos nucleares en los estudios antreriores, comparando de esta forma el impacto de sus incertidumbres. A su vez, mediante dichos estudios, se han comparando las distintas aproximaciones del Método Híbrido y otras metodologías para la porpagación de incertidumbres de datos nucleares: Total Monte Carlo (TMC), desarrollada en NRG por A.J. Koning y D. Rochman, y NUDUNA, desarrollada en AREVA GmbH por O. Buss y A. Hoefer. Estas comparaciones demostrarán las ventajas del Método Híbrido, además de revelar sus limitaciones y su rango de aplicación. ABSTRACT For an adequate assessment of safety margins of nuclear facilities, e.g. nuclear power plants, it is necessary to consider all possible uncertainties that affect their design, performance and possible accidents. Nuclear data are a source of uncertainty that are involved in neutronics, fuel depletion and activation calculations. These calculations can predict critical response functions during operation and in the event of accident, such as decay heat and neutron multiplication factor. Thus, the impact of nuclear data uncertainties on these response functions needs to be addressed for a proper evaluation of the safety margins. Methodologies for performing uncertainty propagation calculations need to be implemented in order to analyse the impact of nuclear data uncertainties. Nevertheless, it is necessary to understand the current status of nuclear data and their uncertainties, in order to be able to handle this type of data. Great eórts are underway to enhance the European capability to analyse/process/produce covariance data, especially for isotopes which are of importance for advanced reactors. At the same time, new methodologies/codes are being developed and implemented for using and evaluating the impact of uncertainty data. These were the objectives of the European ANDES (Accurate Nuclear Data for nuclear Energy Sustainability) project, which provided a framework for the development of this PhD Thesis. Accordingly, first a review of the state-of-the-art of nuclear data and their uncertainties is conducted, focusing on the three kinds of data: decay, fission yields and cross sections. A review of the current methodologies for propagating nuclear data uncertainties is also performed. The Nuclear Engineering Department of UPM has proposed a methodology for propagating uncertainties in depletion calculations, the Hybrid Method, which has been taken as the starting point of this thesis. This methodology has been implemented, developed and extended, and its advantages, drawbacks and limitations have been analysed. It is used in conjunction with the ACAB depletion code, and is based on Monte Carlo sampling of variables with uncertainties. Different approaches are presented depending on cross section energy-structure: one-group, one-group with correlated sampling and multi-group. Differences and applicability criteria are presented. Sequences have been developed for using different nuclear data libraries in different storing-formats: ENDF-6 (for evaluated libraries) and COVERX (for multi-group libraries of SCALE), as well as EAF format (for activation libraries). A revision of the state-of-the-art of fission yield data shows inconsistencies in uncertainty data, specifically with regard to complete covariance matrices. Furthermore, the international community has expressed a renewed interest in the issue through the Working Party on International Nuclear Data Evaluation Co-operation (WPEC) with the Subgroup (SG37), which is dedicated to assessing the need to have complete nuclear data. This gives rise to this review of the state-of-the-art of methodologies for generating covariance data for fission yields. Bayesian/generalised least square (GLS) updating sequence has been selected and implemented to answer to this need. Once the Hybrid Method has been implemented, developed and extended, along with fission yield covariance generation capability, different applications are studied. The Fission Pulse Decay Heat problem is tackled first because of its importance during events after shutdown and because it is a clean exercise for showing the impact and importance of decay and fission yield data uncertainties in conjunction with the new covariance data. Two fuel cycles of advanced reactors are studied: the European Facility for Industrial Transmutation (EFIT) and the European Sodium Fast Reactor (ESFR), and response function uncertainties such as isotopic composition, decay heat and radiotoxicity are addressed. Different nuclear data libraries are used and compared. These applications serve as frameworks for comparing the different approaches of the Hybrid Method, and also for comparing with other methodologies: Total Monte Carlo (TMC), developed at NRG by A.J. Koning and D. Rochman, and NUDUNA, developed at AREVA GmbH by O. Buss and A. Hoefer. These comparisons reveal the advantages, limitations and the range of application of the Hybrid Method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the challenges facing the current web is the efficient use of all the available information. The Web 2.0 phenomenon has favored the creation of contents by average users, and thus the amount of information that can be found for diverse topics has grown exponentially in the last years. Initiatives such as linked data are helping to build the Semantic Web, in which a set of standards are proposed for the exchange of data among heterogeneous systems. However, these standards are sometimes not used, and there are still plenty of websites that require naive techniques to discover their contents and services. This paper proposes an integrated framework for content and service discovery and extraction. The framework is divided into several layers where the discovery of contents and services is made in a representational stateless transfer system such as the web. It employs several web mining techniques as well as feature-oriented modeling for the discovery of cross-cutting features in web resources. The framework is used in a scenario of electronic newspapers. An intelligent agent crawls the web for related news, and uses services and visits links automatically according to its goal. This scenario illustrates how the discovery is made at different levels and how the use of semantics helps implement an agent that performs high-level tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to develop a probabilistic modeling framework for the segmentation of structures of interest from a collection of atlases. Given a subset of registered atlases into the target image for a particular Region of Interest (ROI), a statistical model of appearance and shape is computed for fusing the labels. Segmentations are obtained by minimizing an energy function associated with the proposed model, using a graph-cut technique. We test different label fusion methods on publicly available MR images of human brains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo, «Una aproximación a Ia integración en Open Data de los recursos Inspire de Ia IDEE », tiene por objetivo el construir un puente entre las Infraestructuras de Datos Espaciales (IDE) y el mundo de los «datos abiertos » aprovechando el marco legal de la Reutilización de la Información del Sector Público (RISP). Tras analizar qué es RISP y en particular los datos abiertos, y cómo se implementa en distintas Administraciones, se estudian los requisitos técnicos y legales necesarios para construir el «traductor» que permita canalizar la información IDE en el portal central de reutilización de información español datos.gob.es, dando una mayor visibilidad a los recursos INSPIRE. El trabajo se centra específicamente en dos puntos: en primer lugar en proporcionar y documentar la solución técnica que sirva en primera instancia para que el Instituto Geográfico Nacional aporte con más eficiencia sus recursos a datos.gob.es. En segundo lugar, a estudiar la aplicabilidad de esta misma solución al ámbito de la IDE de España (IDEE), señalando problemas detectados en el análisis de su contenido y sugiriendo recomendaciones para minimizar los problemas de su potencial reutilización. ABSTRACT: This work titled «Analysis of the integration of INSPIRE resources coming from Spanish Spatial Data Infrastructure within the National Public Sector Information portal», aims to build a bridge between the Spatial Data Infrastructures (SDI ) and the world of "Open Data" taking advantage of the legal framework on the Re-use of Public Sector Information (PSI) . After analyzing what PSI reuse and Open Data is and how it is implemented by different administrations, a study to extract the technical and legal requirements is done to build the "translator" that will allow adding SDI resources within the Spanish portal for the PSI reuse data .gob.es while giving greater visibility to INSPIRE. This document specifically focuses on two aspects: first to provide and document the technical solution that serves primarily for the National Geographic Institute to supply more efficiently its resources to datos.gob.es. Secondly, to study the applicability of the proposed solution to the whole Spanish SDI (IDEE), noting identified problems and suggesting recommendations to minimize problems of its potential reuse.