914 resultados para cultivated soybean
Resumo:
Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.
Resumo:
The interpretation of evidence dominates contemporary television crime shows. Inanimate objects and disparate facts are made to speak; technology and expert opinion wring out their stories. In examining these dead pieces of evidence, the investigators search for patterns, discovering living perpetrators and fugitives. Psychology comes in where the evidence is interpreted; the investigators try to think through perpetrators' minds and presumably perverse rationales. Objects are examined. Banal things become precious, put into bags, marked, date- and time-stamped, and stepped around carefully. After a crime, the objects involved are different. After a crime show, our gaze is different; everything is potentially incriminating, perverse. Bags without people don't make sense. Under this gaze, objects acquire a psychology. When we look at a crime scene, the evidence violates us. The work of Melbourne artist Cate Consandine is about objects and how they occupy the space that they occupy. In her practice as a sculptor and throughout her studies at the Victorian College of the Arts, the Sydney College of the Arts, and now Monash, her work has cultivated violent ambiguity. Consandine's work extends across a range of different media, particularly vidoe, objects and spaces. Like a crime show, it activates a particular type of inquisition from the viewer.
Resumo:
Background: Pseudomonas aeruginosa is the most common bacterial pathogen in cystic fibrosis (CF) patients. Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. We hypothesized that with coughing, CF subjects produce viable, respirable bacterial aerosols. Methods: Cross-sectional study of 15 children and 13 adults with CF, 26 chronically infected with P. aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different size, and culture of viable Gram negative non-fermentative bacteria. We collected cough aerosols during 5 minutes voluntary coughing and during a sputum induction procedure when tolerated. Standardized quantitative culture and genotyping techniques were used. Results: P. aeruginosa was isolated in cough aerosols of 25 (89%) subjects of whom 22 produced sputum samples. P. aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In 4 cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles ≤ 3.3 microns aerodynamic diameter. P. aeruginosa, Burkholderia cenocepacia Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (P=0.003). The magnitude of cough aerosols were associated with higher FEV1 (r=0.45, P=0.02) and higher quantitative sputum culture results (r=0.58, P=0.008). Conclusion: During coughing, CF patients produce viable aerosols of P. aeruginosa and other Gram negative bacteria of respirable size range, suggesting the potential for airborne transmission.
Resumo:
The present study was conducted to explore the potential to incorporate local plant-based feed ingredients into diets formulated for the mud crab species, Scylla paramamosain, commonly exploited for aquaculture in South-east Asia. Four test ingredients (defatted soybean meal, rice bran, cassava meal and corn flour) were incorporated at 30% or 45% inclusion levels in a fishmeal-based reference diet and used in digestibility trials where apparent digestibility coefficients (ADCs) for experimental diets and test ingredients were determined. Generally, high ADC values were obtained using diets containing 30% soybean meal or rice bran. By contrast, the lowest ADC values were obtained for the diet containing 45% cassava meal [70.9% for dry matter (ADMD); 77.1% for crude protein (ACPD) and 80.2% for gross energy (AGED)]. Similar trends were observed when ADC ingredient (I) digestibilities were compared. Specifically, the highest ADCI values were obtained for soybean meal when used at a 30% inclusion level (87.6% ADMDI; 98.4% ACPDI and 95.6% AGEDI) while the lowest ADCI values were obtained using cassava meal at a 45% inclusion level (53.8% ADMDI; 60.2% ACPDI and 67.3% AGEDI). Based on the current findings, we propose that soybean meal and rice bran could be considered for incorporation into formulated diets for S. paramamosain.
Resumo:
The present study examined the capacity of the mud crab, Scylla serrata to digest experimental diets that contained different animal and plant-based feed meals or different levels or types of starch. The apparent dry matter digestibility (ADMD) coefficients for all feed meals tested in the first part of this study, except meat meal, were similar (78–88%). Crude protein digestibility (ACPD) coefficients for all feed meals were relatively high, with values ranging from 86% to 96%. Cotton seed meal, poultry meal, canola meal, fishmeal, soybean meal and lupin meal had similar gross energy digestibility (AGED) values (P>0.05) ranging from 84% to 89%. In the second part of this study, the impact of selected starches on the digestibility of fishmeal-based formulated diets was assessed. The apparent starch digestibility (ASD) of wheat starch decreased significantly as the inclusion level was increased from 15% to 60%, however, there was no significant effect on ACPD values. At a 30% inclusion level, the ASD of diets containing different starches decreased in the order corn>wheat>potato=rice. Moreover, ACPD values were significantly higher (P<0.05) in the diets containing corn or rice starch than in those containing wheat or potato starches.
Resumo:
Articular cartilage exhibits limited intrinsic regenerative capacity and focal tissue defects can lead to the development of osteoarthritis (OA), a painful and debilitating loss of cartilage tissue. In Australia, 1.4 million people are affected by OA and its prevalence is increasing in line with current demographics. As treatment options are limited, new therapeutic approaches are being investigated including biological resurfacing of joints with tissue-engineered cartilage. Despite some progress in the field, major challenges remain to be addressed for large scale clinical success. For example, large numbers of chondrogenic cells are required for cartilage formation, but chondrocytes lose their chondrogenic phenotype (dedifferentiate) during in vitro propagation. Additionally, the zonal organization of articular cartilage is critical for normal cartilage function, but development of zonal structure has been largely neglected in cartilage repair strategies. Therefore, we hypothesised that culture conditions for freshly isolated human articular chondrocytes from non-OA and OA sources can be improved by employing microcarrier cultures and a reduced oxygen environment and that oxygen is a critical factor in the maintenance of the zonal chondrocyte phenotype. Microcarriers have successfully been used to cultivate bovine chondrocytes, and offer a potential alternative for clinical expansion of human chondrocytes. We hypothesised that improved yields can be achieved by propagating human chondrocytes on microcarriers. We found that cells on microcarriers acquired a flattened, polygonal morphology and initially proliferated faster than monolayercultivated cells. However, microcarrier cultivation over four weeks did not improve growth rates or the chondrogenic potential of non-OA and OA human articular chondrocytes over conventional monolayer cultivation. Based on these observations, we aimed to optimise culture conditions by modifying oxygen tension, to more closely reflect the in vivo environment. We found that propagation at 5% oxygen tension (moderate hypoxia) did not improve proliferation or redifferentiation capacity of human osteoarthritic chondrocytes. Moderate hypoxia increased the expression of chondrogenic markers during redifferentiation. However, osteoarthritic chondrocytes cultivated on microcarriers exhibited lower expression levels of chondrogenic surface marker proteins and had at best equivalent redifferentiation capacities compared to monolayer-cultured cells. This suggests that monolayer culture with multiple passaging potentially selects for a subpopulation of cells with higher differentiation capacity, which are otherwise rare in osteoarthritic, aged cartilage. However, fibroblastic proteins were found to be highly expressed in all cultures of human osteoarthritic chondrocytes indicating the presence of a high proportion of dedifferentiated, senescent cells with a chondrocytic phenotype that was not rescued by moderate hypoxia. The different zones of cartilage support chondrocyte subpopulations, which exhibit characteristic protein expression and experience varying oxygen tensions. We, therefore, hypothesised that oxygen tension affects the zonal marker expression of human articular chondrocytes isolated from the different cartilage layers. We found that zonal chondrocytes maintained these phenotypic differences during in vitro cultivation. Low oxygen environments favoured the expression of the zonal marker proteoglycan 4 in superficial cells, most likely through the promotion of chondrogenesis. The putative zonal markers clusterin and cartilage intermediate layer protein were found to be expressed by all subpopulations of human osteoarthritic chondrocytes ex vivo and, thus, may not be reliable predictors of in vitro stratification using these clinically relevant cells. The findings in this thesis underline the importance of considering low oxygen conditions and zonal stratification when creating native-like cartilaginous constructs. We have not yet found the right cues to successfully cultivate clinically-relevant human osteoarthritic chondrocytes in vitro. A more thorough understanding of chondrocyte biology and the processes of chondrogenesis are required to ensure the clinical success of cartilage tissue engineering.
Resumo:
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.
Resumo:
Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous report, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association.
Resumo:
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.
Resumo:
More than 13 Mha of nonfederal land in the southeastern U.S. are devoted to pastureland. Between 1982 and 1992, pastureland increased by 100,000 ha, with nearly 70% converted from cultivated land. We examined the potential for carbon (C) sequestration with improved pasture management and conversion into pastureland from cultivated land. Improved pasture management techniques, such as intensive grazing, fertilization, introduction of improved grass and legume species, and better irrigation systems can lead to sequestration of atmospheric C in soil. Literature values for the influence of changes in pasture management on soil C were summarized for several potential management changes in the Southeast. Soil C sequestration estimates for the Southeast were based on current pasture management practices and evaluated for a range of different adoption rates of improved practices. Conversion into pasture can also potentially sequester significant amounts of atmospheric C in soils. Land-use data from the National Resources Inventory and literature estimates of soil C changes following conversion to pasture were used to estimate historical (1982 to 1992) soil C sequestration in pastures. Potential future sequestration was estimated based on extrapolation of land-use trends between 1982 and 1992. With continued conversion into pasture and improvement of pasture management, southeastern U.S. pasture soils may be a significant C sink for several years.
Resumo:
Recent initiatives in values education in Australia emphasise the importance of the process of valuing and general methodologies that foster this in the classroom. Although a range of strategies are available, this chapter argues that inquiry-based approaches in the Social Sciences play a significant role in linking valuing processes with decision making skills. Collectively, these approaches prompt the development of reasoning and self awareness which also impact on student wellness. This chapter proposes some curriculum approaches to foreground values education in the Australian Social Sciences classroom. It argues that valuing is an important life skill that can be cultivated in the classroom through specific valuing strategies. It contends that the development of the capacity to make informed value choices is a critical factor in promoting wellness and resilience in students and in preparing them for the decision making skills required for effective participation in society.
Resumo:
This study used the Australian Environmental Health Risk Assessment Framework to assess the human health risk of dioxin exposure through foods for local residents in two wards of Bien Hoa City, Vietnam. These wards are known hot-spots for dioxin and a range of stakeholders from central government to local levels were involved in this process. Publications on dioxin characteristics and toxicity were reviewed and dioxin concentrations in local soil, mud, foods, milk and blood samples were used as data for this risk assessment. A food frequency survey of 400 randomly selected households in these wards was conducted to provide data for exposure assessment. Results showed that local residents who had consumed locally cultivated foods, especially fresh water fish and bottom-feeding fish, free-ranging chicken, duck, and beef were at a very high risk, with their daily dioxin intake far exceeding the tolerable daily intake recommended by the WHO. Based on the results of this assessment, a multifaceted risk management program was developed and has been recognized as the first public health program ever to have been implemented in Vietnam to reduce the risks of dioxin exposure at dioxin hot-spots.
Resumo:
Creativity is an important graduate capability which needs to be cultivated in engineering students. The evidence suggests that to develop creativity and innovation in students it is necessary to give them significant practice is divergent thinking. This kind of practice is particularly important in disciplines such as the physical sciences and engineering which have traditionally had a heavy emphasis on convergent (rather than divergent) thinking. Accordingly, this paper presents a novel strategy for engendering divergent thinking in engineering students. It is an unconventional approach in which students compose and perform contemporary raps which help them to summarise and reflect on material covered in lectures.
Resumo:
Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
In Uganda, vitamin A deficiency (VAD) and iron deficiency anaemia (IDA) are major public health problems with between 15-32% of children under 5 years of age showing VAD and 73% being anaemic. This is largely due to the fact that the staple food crop of the country, banana, is low in pro-vitamin A and iron, therefore leading to dietary deficiencies. Although worldwide progress has been made to control VAD and IDA through supplementation, food fortification and diet diversification, their long term sustainability and impact in developing countries such as Uganda is limited. The approach taken by researchers at Queensland University of Technology (QUT), Australia, in collaboration with the National Agricultural Research Organization (NARO), Uganda, to address this problem, is to generate consumer acceptable banana varieties with significantly increased levels of pro-vitamin A and iron in the fruit using genetic engineering techniques. Such an approach requires the use of suitable, well characterised genes and promoters for targeted transgene expression. Recently, a new banana phytoene synthase gene (APsy2a) involved in the synthesis of pro-vitamin A (pVA) carotenoids was isolated from a high â-carotene banana (F’ei cv Asupina). In addition, sequences of banana ferritin, an iron storage protein, have been isolated from Cavendish banana. The aim of the research described in this thesis was to evaluate the function of these genes to assess their suitability for the biofortification of banana fruit. In addition, a range of banana-derived promoters were characterised to determine their suitability for controlling the expression of transgenes in banana fruit. Due to the time constraints involved with generating transgenic banana fruit, rice was used as the model crop to investigate the functionality of the banana-derived APsy2a and ferritin genes. Using Agrobacterium-mediated transformation, rice callus was transformed with APsy2a +/- the bacterial-derived carotene desaturase gene (CrtI) each under the control of the constitutive maize poly-ubiquitin promoter (ZmUbi) or seed-specific rice glutelin1 (Gt1) promoter. The maize phytoene synthase (ZmPsy1) gene was included as a control. On selective media, with the exception of ZmUbi-CrtI-transgenic callus, all antibiotic resistant callus displayed a yellow-orange colour from which the presence of â-carotene was demonstrated using Raman spectroscopy. Although the regeneration of plants from yellow-orange callus was difficult, 16 transgenic plants were obtained and characterised from callus transformed with ZmUbi-APys2a alone. At least 50% of the T1 seeds developed a yellow-orange coloured callus which was found to contain levels of â-carotene ranging from 4.6-fold to 72-fold higher than that in non-transgenic rice callus. Using the seed-specific Gt1 promoter, 38 transgenic rice plants were generated from APsy2a-CrtI-transformed callus while 32 plants were regenerated from ZmPsy1-CrtI-transformed callus. However, when analysed for presence of transgene by PCR, all transgenic plants contained the APsy2a, ZmPsy1 or CrtI transgene, with none of the plants found to be co-transformed. Using Raman spectroscopy, no â-carotene was detected in-situ in representative T1 seeds. To investigate the potential of the banana-derived ferritin gene (BanFer1) to enhance iron content, rice callus was transformed with constitutively expressed BanFer1 using the soybean ferritin gene (SoyFer) as a control. A total of 12 and 11 callus lines independently transformed with BanFer1 and SoyFer, respectively, were multiplied and transgene expression was verified by RT-PCR. Pearl’s Prussian blue staining for in-situ detection of ferric iron showed a stronger blue colour in rice callus transformed with BanFer1 compared to SoyFer. Using flame atomic absorption spectrometry, the highest mean amount of iron quantified in callus transformed with BanFer1 was 30-fold while that obtained using the SoyFer was 14-fold higher than the controls. In addition, ~78% of BanFer1-transgenic callus lines and ~27% of SoyFer-transgenic callus lines had significantly higher iron content than the non-transformed controls. Since the genes used for enhancing micronutrient content need to be expressed in banana fruit, the activity of a range of banana-derived, potentially fruit-active promoters in banana was investigated. Using uidA (GUS) as a reporter gene, the function of the Expansin1 (MaExp1), Expansin1 containing the rice actin intron (MaExp1a), Expansin4 (MaExp4), Extensin (MaExt), ACS (MaACS), ACO (MaACO), Metallothionein (MaMT2a) and phytoene synthase (APsy2a) promoters were transiently analysed in intact banana fruit using two transformation methods, particle bombardment and Agrobacterium-mediated infiltration (agro-infiltration). Although a considerable amount of variation in promoter activity was observed both within and between experiments, similar trends were obtained using both transformation methods. The MaExp1 and MaExp1a directed high levels of GUS expression in banana fruit which were comparable to those observed from the ZmUbi and Banana bunchy top virus-derived BT4 promoters that were included as positive controls. Lower levels of promoter activity were obtained in both methods using the MaACO and MaExt promoters while the MaExp4, MaACS, and APsy2a promoters directed the lowest GUS activity in banana fruit. An attempt was subsequently made to use agro-infiltration to assess the expression of pVA biosynthesis genes in banana fruit by infiltrating fruit with constructs in which the ZmUbi promoter controlled the expression of APsy2a +/- CrtI, and with the maize phytoene synthase gene (ZmPsy1) included as a control. Unfortunately, the large amount of variation and inconsistency observed within and between experiments precluded any meaningful conclusions to be drawn. The final component of this research was to assess the level of promoter activity and specificity in non-target tissue. These analyses were done on leaves obtained from glasshouse-grown banana plants stably transformed with MaExp1, MaACO, APsy2a, BT4 and ZmUbi promoters driving the expression of the GUS gene in addition to leaves from a selection of the same transgenic plants which were growing in a field trial in North Queensland. The results from both histochemical and fluorometric GUS assays showed that the MaExp1 and MaACO promoters directed very low GUS activities in leaves of stably transformed banana plants compared to the constitutive ZmUbi and BT4 promoters. In summary, the results from this research provide evidence that the banana phytoene synthase gene (APsy2a) and the banana ferritin gene (BanFer1) are functional, since the constitutive over-expression of each of these transgenes led to increased levels of pVA carotenoids (for APsy2a) and iron content (for BanFer1) in transgenic rice callus. Further work is now required to determine the functionality of these genes in stably-transformed banana fruit. This research also demonstrated that the MaExp1 and MaACO promoters are fruit-active but have low activity in non-target tissue (leaves), characteristics that make them potentially useful for the biofortification of banana fruit. Ultimately, however, analysis of fruit from field-grown transgenic plants will be required to fully evaluate the suitability of pVA biosynthesis genes and the fruit-active promoters for fruit biofortification.