829 resultados para convex subgraphs
Resumo:
2000 Mathematics Subject Classification: Primary 90C29; Secondary 49K30.
An efficient, approximate path-following algorithm for elastic net based nonlinear spike enhancement
Resumo:
Unwanted spike noise in a digital signal is a common problem in digital filtering. However, sometimes the spikes are wanted and other, superimposed, signals are unwanted, and linear, time invariant (LTI) filtering is ineffective because the spikes are wideband - overlapping with independent noise in the frequency domain. So, no LTI filter can separate them, necessitating nonlinear filtering. However, there are applications in which the noise includes drift or smooth signals for which LTI filters are ideal. We describe a nonlinear filter formulated as the solution to an elastic net regularization problem, which attenuates band-limited signals and independent noise, while enhancing superimposed spikes. Making use of known analytic solutions a novel, approximate path-following algorithm is given that provides a good, filtered output with reduced computational effort by comparison to standard convex optimization methods. Accurate performance is shown on real, noisy electrophysiological recordings of neural spikes.
Resumo:
Николай М. Николов - Разгледани са характеризации на различни понятия за изпъкналост, като тези понятия са сравнени.
Resumo:
AMS subject classification: 90B80.
Resumo:
AMS subject classification: 90C30, 90C33.
Resumo:
In this paper, we propose a new edge-based matching kernel for graphs by using discrete-time quantum walks. To this end, we commence by transforming a graph into a directed line graph. The reasons of using the line graph structure are twofold. First, for a graph, its directed line graph is a dual representation and each vertex of the line graph represents a corresponding edge in the original graph. Second, we show that the discrete-time quantum walk can be seen as a walk on the line graph and the state space of the walk is the vertex set of the line graph, i.e., the state space of the walk is the edges of the original graph. As a result, the directed line graph provides an elegant way of developing new edge-based matching kernel based on discrete-time quantum walks. For a pair of graphs, we compute the h-layer depth-based representation for each vertex of their directed line graphs by computing entropic signatures (computed from discrete-time quantum walks on the line graphs) on the family of K-layer expansion subgraphs rooted at the vertex, i.e., we compute the depth-based representations for edges of the original graphs through their directed line graphs. Based on the new representations, we define an edge-based matching method for the pair of graphs by aligning the h-layer depth-based representations computed through the directed line graphs. The new edge-based matching kernel is thus computed by counting the number of matched vertices identified by the matching method on the directed line graphs. Experiments on standard graph datasets demonstrate the effectiveness of our new kernel.
Resumo:
AMS subject classification: Primary 49J52; secondary: 26A27, 90C48, 47N10.
Resumo:
2010 Mathematics Subject Classification: 35A23, 35B51, 35J96, 35P30, 47J20, 52A40.
Resumo:
2000 Mathematics Subject Classification: 46B28, 47D15.
Resumo:
2000 Mathematics Subject Classification: Primary 46H05, 46H20; Secondary 46M20.
Resumo:
2000 Mathematics Subject Classification: 30C25, 30C45.
Resumo:
2000 Mathematics Subject Classification: 26E25, 41A35, 41A36, 47H04, 54C65.
Resumo:
In this paper, we give several results for majorized matrices by using continuous convex function and Green function. We obtain mean value theorems for majorized matrices and also give corresponding Cauchy means, as well as prove that these means are monotonic. We prove positive semi-definiteness of matrices generated by differences deduced from majorized matrices which implies exponential convexity and log-convexity of these differences and also obtain Lypunov's and Dresher's type inequalities for these differences.
Resumo:
2000 Mathematics Subject Classification: 90C46, 90C26, 26B25, 49J52.
Resumo:
2000 Mathematics Subject Classification: 26E35, 14H05, 14H20.