959 resultados para concrete with metakaolin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bonded repair of concrete structures with fiber reinforced polymer (FRP) systems is increasingly being accepted as a cost-efficient and structurally viable method of rapid rehabilitation of concrete structures. However, the relationships between long-term performance attributes, service-life, and details of the installation process are not easy to quantify. Accordingly, there is currently a lack of generally accepted construction specifications, making it difficult for the field engineer to certify the adequacy of the construction process. ^ The objective of the present study, as part of the National Cooperative Highway Research Program (NCHRP) Project 10-59B, was to investigate the effect of surface preparation on the behavior of wet lay-up FRP repair systems and consequently develop rational thresholds that provide sufficient performance. ^ The research program was comprised of both experimental and analytical work for wet lay-up FRP applications. The experimental work included flexure testing of sixty-seven (67) reinforced concrete beams and bond testing of ten (10) reinforced concrete blocks. Four different parameters were studied: surface roughness, surface flatness, surface voids and bug holes, and surface cracks/cuts. The findings were analyzed from various aspects and compared with the data available in the literature. As part of the analytical work, finite element models of the flexural specimens with surface flaws were developed using ANSYS. The purpose of this part was to extend the parametric study on the effects of concrete surface flaws and verify the experimental results based on nonlinear finite element analysis. ^ Test results showed that surface roughness does not appear to have a significant influence on the overall performance of the wet lay-up FRP systems with or without adequate anchorage, and whether failure was by debonding or rupture of FRP. Both experimental and analytical results for surface flatness proved that peaks on concrete surface, in the range studied, do not have a significant effect on the performance of wet lay-up FRP systems. However, valleys of particular size could reduce the strength of wet lay-up FRP systems. Test results regarding surface voids and surface cracks/cuts revealed that previously suggested thresholds for these flaws appear to be conservative, as also confirmed by analytical study. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to investigate the reason lumps occur in high-slump concrete and develop adequate batching procedures for a lumps-free high-slump ready-mix concrete mix used by the Florida Department of Transportation. Cement balls are round lumps of cement, sand, and coarse aggregate, typically about the size of a baseball that frequently occur in high-slump concrete. Such lumps or balls jeopardize the structural integrity of structural members. Experiments were conducted at the CSR Rinker concrete plant in Miami, Florida, based on a protocol developed by a team of Florida Department of Transportation (FDOT) concrete engineers, Rinker personnel, and Florida International University faculty. A total of seventeen truckloads were investigated in two phases, between April 2001 and March 2002. The tests consisted of gathering data by varying load size, discharge rate, headwater content, and mixing revolutions. The major finding was that a usual load size and discharge rate, an initial headwater ratio of 30%, and an initial number of revolutions of 100 at 12 revolutions per minute seem to produce a lump-free high-slump concrete. It was concluded that inadequate mixing and batching procedures caused cement lumps. Recommendations regarding specific load size, discharge rates, number of mixing revolutions, and initial water content are made. Clear guidelines for a high-slump concrete batching protocol can be developed, with further testing based on these research conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to highlight what kind of information distinguishes abstract and concrete conceptual knowledge in different aged children. A familiarity-rating task has shown that 8-year-olds judged concrete concepts as very familiar while abstract concepts were judged as much less familiar with ratings increasing substantially from age 10 to age 12, according to literature showing that abstract terms are not mastered until adolescence (Schwanenflugel, 1991). The types of relation elicited by abstract and concrete concepts during development were investigated in an association production task. At all considered age levels, concrete concepts mainly activated attributive and thematic relations as well as, to a much lesser extent, taxonomic relations and stereotypes. Abstract concepts, instead, elicited mainly thematic relations and, to a much lesser extent, examples and taxonomic relations. The patterns of relations elicited were already differentiated by age 8, becoming more specific in abstract concepts with age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present article I try to share some reflections on a case study of an attachment disorder child I worked with for two years through art therapy in a day hospital. Those reflections let me go deeply in some specific elements concerning the discipline which let us delimit its theoretical and methodological possible scope. In this way, from the specific of the case study on propose to reflect on those elements that conform a methodology related to the art therapist way of doing, in order to concrete and evaluate other possible interventions to develop in similar cases and contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To learn complex skills, like collaboration, learners need to acquire a concrete and consistent mental model of what it means to master this skill. If learners know their current mastery level and know their targeted mastery level, they can better determine their subsequent learning activities. Rubrics support learners in judging their skill performance as they provide textual descriptions of skills’ mastery levels with performance indicators for all constituent subskills. However, text-based rubrics have a limited capacity to support the formation of mental models with contextualized, time-related and observable behavioral aspects of a complex skill. This paper outlines the design of a study that intends to investigate the effect of rubrics with video modelling examples compared to text-based rubrics on skills acquisition and feedback provisioning. The hypothesis is that video-enhanced rubrics, compared to text based rubrics, will improve mental model formation of a complex skill and improve the feedback quality a learner receives (from e.g. teachers, peers) while practicing a skill, hence positively effecting final mastery of a skill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In establishing the reliability of performance-related design methods for concrete – which are relevant for resistance against chloride-induced corrosion - long-term experience of local materials and practices and detailed knowledge of the ambient and local micro-climate are critical. Furthermore, in the development of analytical models for performance-based design, calibration against test data representative of actual conditions in practice is required. To this end, the current study presents results from full-scale, concrete pier-stems under long-term exposure to a marine environment with work focussing on XS2 (below mid-tide level) in which the concrete is regarded as fully saturated and XS3 (tidal, splash and spray) in which the concrete is in an unsaturated condition. These exposures represent zones where concrete structures are most susceptible to ionic ingress and deterioration. Chloride profiles and chloride transport behaviour are studied using both an empirical model (erfc function) and a physical model (ClinConc). The time dependency of surface chloride concentration (Cs) and apparent diffusivity (Da) were established for the empirical model whereas, in the ClinConc model (originally based on saturated concrete), two new environmental factors were introduced for the XS3 environmental exposure zone. Although the XS3 is considered as one environmental exposure zone according to BS EN 206-1:2013, the work has highlighted that even within this zone, significant changes in chloride ingress are evident. This study aims to update the parameters of both models for predicting the long term transport behaviour of concrete subjected to environmental exposure classes XS2 and XS3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of research presented in this paper was the material and radiological characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural radionuclide content and radon emanation and exhalation coefficients. All concrete samples were made with a fly ash content between 50% and 70% of the total amount of cementitious materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete density) and mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity) of concrete were tested. The radionuclide content (226Ra, 232Th and 40K) and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. Determination of massic exhalation rates of HVFAC and its components using radon accumulation chamber techniques combined with a radon monitor was performed. The results show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in an increase in compressive strength of HVFAC by approximately 20% for the same mass of cement used in the mixtures. On the basis of the obtained radionuclide content of concrete components the I -indices of different HVFAC samples were calculated and compared with measured values (0.27e0.32), which were significantly below the recommended 1.0 index value. The prediction was relatively close to the measured values as the ratio between the calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical and radiological properties and performed calculations clearly prove that all 10 designed concretes with a certain type of fly ash are suitable for structural and non-structural applications both from a material and radiological point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports an experimental investigation designed to assess the influence of near-surface moisture contents on permeation properties of alkali-activated slag concrete (AASC). Five different drying periods (5, 10, 15, 20 and 25 days) and three AASC and normal concretes with compressive strength grades ranging from C30 to C60 were considered. Assessment of moisture distribution was
achieved using 100 mm diameter cores with drilled cavities. Results indicate that air permeability of AASC is very sensitive to the moisture content and its spatial distribution, especially at relative humidity above 65%. To control the influence of moisture on permeation testing, the recommendation of this paper is that AASC specimens should be dried in controlled conditions at 40 C for 10 days prior to testing. It was also concluded from this study that AASC tends to perform less well, in terms of air permeability and sorptivity, than normal concrete for a given strength grade. This conclusion reinforces the need to further examine AASC properties prior to its widespread practical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete solar collectors offer a type of solar collector with structural, aesthetic and economic advantages over current populartechnologies. This study examines the influential parameters of concrete solar collectors. In addition to the external conditions,the performance of a concrete solar collector is influenced by the thermal properties of the concrete matrix, piping network andfluid. Geometric and fluid flow parameters also influence the performance of the concrete solar collector. A literature review ofconcrete solar collectors is conducted in order to define the benchmark parameters from which individual parameters are thencompared. The numerical model consists of a 1D pipe flow network coupled with the heat transfer in a 3D concrete domain. Thispaper is concerned with the physical parameters that define the concrete solar collector, thus a constant surface temperature isused as the exposed surface boundary condition with all other surfaces being insulated. Results show that, of the parametersinvestigated, the pipe spacing, ps, concrete conductivity, kc, and the pipe embedment depth, demb, are among those parameterswhich have greatest effect on the collector’s performance. The optimum balance between these parameters is presented withrespect to the thermal performance and discussed with reference to practical development issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse analysis for reactive transport of chlorides through concrete in the presence of electric field is presented. The model is solved using MATLAB’s built-in solvers “pdepe.m” and “ode15s.m”. The results from the model are compared with experimental measurements from accelerated migration test and a function representing the lack of fit is formed. This function is optimised with respect to varying amount of key parameters defining the model. Levenberg-Marquardt trust-region optimisation approach is employed. The paper presents a method by which the degree of inter-dependency between parameters and sensitivity (significance) of each parameter towards model predictions can be studied on models with or without clearly defined governing equations. Eigen value analysis of the Hessian matrix was employed to investigate and avoid over-parametrisation in inverse analysis. We investigated simultaneous fitting of parameters for diffusivity, chloride binding as defined by Freundlich isotherm (thermodynamic) and binding rate (kinetic parameter). Fitting of more than 2 parameters, simultaneously, demonstrates a high degree of parameter inter-dependency. This finding is significant as mathematical models for representing chloride transport rely on several parameters for each mode of transport (i.e., diffusivity, binding, etc.), which combined may lead to unreliable simultaneous estimation of parameters.