1000 resultados para complex script
Resumo:
Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Schistosoma mansoni infection induces in their hosts a marked and sustained eosinophilia, which is influenced or modulated by complex mechanisms, that vary according to the phase of infection. To address this phenomenon, we used the air pouch (AP) model in control and infected Swiss webster mice, analyzing the cellular, tissue response and local expression of adhesion molecules [CD18 (beta 2-chain), CD44, ICAM-1 (CD54), L-selectin (CD62L), CD49d (alpha 4-chain), LFA1 (CD11a)]. Infected animals were studied at 3 (pre-oviposition phase), 7 (acute phase), and 14 (chronic phase) weeks after infection (5-6 mice/period of infection). Normal mice were age-matched. Results showed that after egg stimulation, compared with matched controls, the infected mice, at each point of infection, showed a lower eosinophil response in the acute (7 weeks) and chronic phase (14 weeks) of infection. However, when the infected mice were in pre-oviposition phase (3 weeks) their eosinophil response surpassed the control ones. In the AP wall of infected mice, a significant decrease in the expression of ICAM-1 and CD44 in fibroblastic-like cells and a reduction in the number of CD18 and CD11a in migratory cells were observed. The other adhesion molecules were negative or weakly expressed. The results indicated that in the air pouch model, in S. mansoni-infected mice: (1) eosinophil response is strikingly down-regulated, during the acute ovular phase; (2) in the pre-oviposition phase, in contrast, it occurs an up-regulatory modulation of eosinophil response, in which the mechanisms are completely unknown; (3) in the chronic phase of the infection, the down modulation of eosinophil response is less pronounced; 4) Down-regulation of adhesion molecules, specially of ICAM-1 appear to be associated with the lower eosinophil response.
Resumo:
We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism.
Resumo:
Genetic diversity among three field populations of Lutzomyia longipalpis in Colombia was studied using isozyme analysis. Study sites were as much as 598 km apart and included populations separated by the eastern Cordillera of the Andes. Genetic variability among populations, estimated by heterozygosity, was within values typical for insects in general (8.1%). Heterozygosity for field populations were compared with a laboratory colony from Colombia (Melgar colony) and were only slightly lower. These results suggest that establishment and long term maintenance of the Melgar colony has had little effect on the level of isozyme variability it carries. Genetic divergences between populations was evaluated using estimates of genetic distance. Genetic divergence among the three field populations was low (D=0.021), suggesting they represent local populations within a single species. Genetic distance between field populations and the Melgar colony was also low (D=0.016), suggesting that this colony population does not depart significantly from natural populations. Finally, comparisons were made between Colombian populations and colonies from Brazil and Costa Rica. Genetic distance values were high between Colombian and both Brazil and Costa Rica colony populations (D=0.199 and 0.098 respectively) providing additional support for our earlier report that populations from the three countries represent distinct species
Resumo:
The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.
Resumo:
Mycolic acids analysis by thin-layer chromatography (TLC) has been employed by several laboratories worldwide as a method for fast identification of mycobacteria. This method was introduced in Brazil by our laboratory in 1992 as a routine identification technique. Up to the present, 861 strains isolated were identified by mycolic acids TLC and by standard biochemical tests; 61% out of these strains came as clinical samples, 4% isolated from frogs and 35% as environmental samples. Mycobacterium tuberculosis strains identified by classical methods were confirmed by their mycolic acids contents (I, III and IV). The method allowed earlier differentiation of M. avium complex - MAC (mycolic acids I, IV and VI) from M. simiae (acids I, II and IV), both with similar biochemical properties. The method also permitted to distinguish M. fortuitum (acids I and V) from M. chelonae (acids I and II) , and to detect mixed mycobacterial infections cases as M. tuberculosis with MAC and M. fortuitum with MAC. Concluding, four years experience shows that mycolic acids TLC is an easy, reliable, fast and inexpensive method, an important tool to put together conventional mycobacteria identification methods.
Resumo:
Nitric oxide (NO) is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP), named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen) or to SWAP. In the present work we report the effect of different in vivo trials with mice on their spleen cells ability to produce NO. We demonstrate that PIII-immunization is able to significantly increase NO production by spleen cells after in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.
Resumo:
Palmer previously proposed a classification system of triangular fibrocartilage complex (TFCC) injuries that proved to be useful in directing clinical management. However, dorsal peripheral tears (variants of class 1C) were not described and have rarely been reported in the literature since. We herewith present a rare case of bucket-handle tear of the TFCC. To our knowledge, this is the first case demonstrating partial separation of both the palmar and dorsal distal radioulnar ligaments (DRULs) from the articular disc. The particular wrist magnetic resonance (MR) arthrographic findings of this unusual complex peripheral TFCC tear (a variant of both class 1B and 1C) were nicely appreciated upon sagittal reformatted images.
Resumo:
The freshwater snails Biomphalaria straminea, B. intermedia, B. kuhniana and B. peregrina, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex B. straminea. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: Dde I, Mnl I, Hae III, Rsa I, Hpa II e Alu I. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of Biomphalaria. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.
Resumo:
The epidemiology of animal trypanosomosis around Bobo-Dioulasso (Burkina Faso, West Africa) benefited a lot in the last years from the progress of molecular tools. The two most used molecular techniques were the polymerase chain reaction for the diagnosis of the disease in cattle and the characterization of the trypanosomes in the host and the vector on one hand, and the microsatellite DNA polymorphism in tsetse flies to study the intraspecific genetic variability of the vector on the other hand. The results obtained in the Sideradougou area during a recent two year survey with these techniques, associated with many other georeferenced informations concerning vector and cattle distribution, natural environment, landuse, ground occupation, livestock management, were combined in a Geographical Information System. This new approach of a complex pathogenic system led to a better evaluation of the risk of trypanosome transmission.
Ecogenetics of Triatoma sordida and Triatoma guasayana (Hemiptera: Reduviidae) in the Bolivian Chaco
Resumo:
Triatoma guasayana and two putative cryptic species pertaining to T. sordida complex (named groups 1 and 2) occur in sympatry in the Bolivian Chaco. Using multilocus enzyme electrophoresis and subsequent genetic analysis, our work assesses their population distribution and dispersal capacity in domestic, peridomestic, and silvatic environments. Our collections by light trap in the silvatic environment indicated a predominance of T. guasayana and T. sordida group 2 and a lesser abundance of T. sordida group 1 (£ 10% of the total of captures). Their similar distribution in two silvatic areas 80 km apart supports the hypothesis of their homogeneous dispersal through the Bolivian Chaco. The distribution of T. guasayana and T. sordida groups 1 and 2 was similar between silvatic environment and peridomestic ecotopes where 25% of positive places was occupied by two or three species. Bromeliads were confirmed as favorable shelter for T. guasayana but were free of T. sordida. T. sordida group 1 and to a lesser extent T. guasayana would be more invasive vectors for houses than T. sordida group 2. The spatial partition in the three species sampled in two distant sites suggested a reduced dispersive capacity.
Resumo:
Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.