905 resultados para co-produced water
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. This work measured the amount of bound versus unbound water in completely-demineralized dentin.Methods. Dentin beams prepared from extracted human teeth were completely demineralized, rinsed and dried to constant mass. They were rehydrated in 41% relative humidity (RH), while gravimetrically measuring their mass increase until the first plateau was reached at 0.064 (vacuum) or 0.116 g H2O/g dry mass (Drierite). The specimens were then exposed to 60% RH until attaining the second plateau at 0.220 (vacuum) or 0.191 g H2O/g dry mass (Drierite), and subsequently exposed to 99% RH until attaining the third plateau at 0.493 (vacuum) or 0.401 g H2O/g dry mass (Drierite).Results. Exposure of the first layer of bound water to 0% RH for 5 min produced a -0.3% loss of bound water; in the second layer of bound water it caused a -3.3% loss of bound water; in the third layer it caused a -6% loss of bound water. Immersion in 100% ethanol or acetone for 5 min produced a 2.8 and 1.9% loss of bound water from the first layer, respectively; it caused a -4 and -7% loss of bound water in the second layer, respectively; and a -17 and -23% loss of bound water in the third layer. Bound water represented 21-25% of total dentin water. Chemical dehydration of water-saturated dentin with ethanol/acetone for 1 min only removed between 25 and 35% of unbound water, respectively.Signcance. Attempts to remove bound water by evaporation were not very successful. Chemical dehydration with 100% acetone was more successful than 100% ethanol especially the third layer of bound water. Since unbound water represents between 75 and 79% of total matrix water, the more such water can be removed, the more resin can be infiltrated. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the present experiments, we investigated a possible involvement of noradrenergic receptors of the lateral hypothalamus (LH) in the water intake and pressor response induced by cholinergic stimulation of the medial septal area (MSA) in rats. The cholinergic agonist carbachol (2 nmol) injected into the MSA induced water intake and pressor response. The injection of an α2-adrenergic agonist, clonidine (20 and 40 nmol), but not of an α1-adrenergic agonist, phenylephrine (80 and 160 nmol), into the LH inhibits the water intake induced by carbachol injected into the MSA. The injection of clonidine or phenylephrine into the LH produced no change in the MAP increase induced by carbachol injected into the MSA. The present results suggest that adrenergic pathways involving the LH are important for the water intake, but not for the pressor response, induced by cholinergic activation of the MSA. © 1994.
Resumo:
This study investigated the analgesic and systemic effects of intramuscular (IM) versus epidural (EP) administration of tramadol as an adjunct to EP injection of lidocaine in cats. Six healthy, domestic, shorthair female cats underwent general anesthesia. A prospective, randomized, crossover trial was then conducted with each cat receiving the following 3 treatments: EP injection of 2% lidocaine [LEP; 3.0 mg/kg body weight (BW)]; EP injection of a combination of lidocaine and 5% tramadol (LTEP; 3.0 and 2.0 mg/kg BW, respectively); or EP injection of lidocaine and IM injection of tramadol (LEPTIM; 3.0 and 2.0 mg/kg BW, respectively). Systemic effects, spread and duration of analgesia, behavior, and motor blockade were determined before treatment and at predetermined intervals afterwards. The duration of analgesia was 120 ± 31 min for LTEP, 71 ± 17 min for LEPTIM, and 53 ± 6 min for LEP (P < 0.05; mean ± SD). The cranial spread of analgesia obtained with LTEP was similar to that with LEP or LEPTIM, extending to dermatomic region T13-L1. Complete motor blockade was similar for the 3 treatments. It was concluded that tramadol produces similar side effects in cats after either EP or IM administration. Our findings indicate that EP and IM tramadol (2 mg/kg BW) with EP lidocaine produce satisfactory analgesia in cats. As an adjunct to lidocaine, EP tramadol provides a longer duration of analgesia than IM administration. The adverse effects produced by EP and IM administration of tramadol were not different. Further studies are needed to determine whether EP administration of tramadol could play a role in managing postoperative pain in cats when co-administered with lidocaine after painful surgical procedures.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present study, we investigated the effect of phenylephrine and clonidine (α1- and α2-adrenoceptor agonists, respectively) injected into the lateral preoptic area (LPOA) on the water intake induced by water deprivation in rats. In addition, the effects of prior injections of prazosin and yohimbine (α1- and α2-adrenoceptor antagonists, respectively) into the LPOA on the antidipsogenic action of phenylephrine and clonidine were investigated. After 30 h of water deprivation, the water intake of rats in a control experiment (saline injection) was 10.5 ± 0.8 ml/h. Injection of clonidine (5, 10, 20, and 40 nmol) into the LPOA reduced water intake to 6.3 ± 0.9, 4.9 ± 0.8, 3.6 ± 1.0, and 2.2 ± 0.7 ml/h, respectively. Similar reductions occurred after injection of 80 and 160 nmol phenylephrine into the LPOA (6.2 ± 1.6 and 4.8 ± 1.3 ml/h, respectively). Pretreatment with prazosin (40 nmol) abolished the antidipsogenic action of an 80-nmol dose of phenylephrine (11.3 ± 1.1 ml/h) and reduced the effect of a 20-nmol dose of clonidine (7.4 ± 1.4 ml/h). Yohimbine (20, 40, and 80 nmol), previously injected, produced no significant changes in the effects of either phenylephrine or clonidine. The present results show that phenylephrine and clonidine injected into the LPOA induce an antidipsogenic effect in water-deprived rat. They also suggest an involvement of α1-adrenoceptors in this effect. A possible participation of imidazole receptors in the effect of clonidine should also be taken into account. © 1993.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)