926 resultados para clean and large throughput differential pumping system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Respiration of zooplanktonic organisms is an significant fraction of the global carbon cycle. However, it estimation in order to obtain the data required in oceanography is still a problem. In this work, we studied respiration rates in laboratory and field experiments. Laboratory experiments using Daphnia spp. showed a significant decrease of respiration rates during starvation. In addition, we measured the gut fluorescence and enzymatic activity (electron transfer system, ETS). The former did not show the expected decrease probably due to the volume of the incubators. The relationship between respiration and ETS presented the classical variability ranging between 0.5 and 1 as observed in previous works. Copepod respiration rates were measured during RAPROCAN 1504 cruise around the Canary Islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bread dough and particularly wheat dough, due to its viscoelastic behaviour, is probably the most dynamic and complicated rheological system and its characteristics are very important since they highly affect final products’ textural and sensorial properties. The study of dough rheology has been a very challenging task for many researchers since it can provide numerous information about dough formulation, structure and processing. This explains why dough rheology has been a matter of investigation for several decades. In this research rheological assessment of doughs and breads was performed by using empirical and fundamental methods at both small and large deformation, in order to characterize different types of doughs and final products such as bread. In order to study the structural aspects of food products, image analysis techniques was used for the integration of the information coming from empirical and fundamental rheological measurements. Evaluation of dough properties was carried out by texture profile analysis (TPA), dough stickiness (Chen and Hoseney cell) and uniaxial extensibility determination (Kieffer test) by using a Texture Analyser; small deformation rheological measurements, were performed on a controlled stress–strain rheometer; moreover the structure of different doughs was observed by using the image analysis; while bread characteristics were studied by using texture profile analysis (TPA) and image analysis. The objective of this research was to understand if the different rheological measurements were able to characterize and differentiate the different samples analysed. This in order to investigate the effect of different formulation and processing conditions on dough and final product from a structural point of view. For this aim the following different materials were performed and analysed: - frozen dough realized without yeast; - frozen dough and bread made with frozen dough; - doughs obtained by using different fermentation method; - doughs made by Kamut® flour; - dough and bread realized with the addition of ginger powder; - final products coming from different bakeries. The influence of sub-zero storage time on non-fermented and fermented dough viscoelastic performance and on final product (bread) was evaluated by using small deformation and large deformation methods. In general, the longer the sub-zero storage time the lower the positive viscoelastic attributes. The effect of fermentation time and of different type of fermentation (straight-dough method; sponge-and-dough procedure and poolish method) on rheological properties of doughs were investigated using empirical and fundamental analysis and image analysis was used to integrate this information throughout the evaluation of the dough’s structure. The results of fundamental rheological test showed that the incorporation of sourdough (poolish method) provoked changes that were different from those seen in the others type of fermentation. The affirmative action of some ingredients (extra-virgin olive oil and a liposomic lecithin emulsifier) to improve rheological characteristics of Kamut® dough has been confirmed also when subjected to low temperatures (24 hours and 48 hours at 4°C). Small deformation oscillatory measurements and large deformation mechanical tests performed provided useful information on the rheological properties of samples realized by using different amounts of ginger powder, showing that the sample with the highest amount of ginger powder (6%) had worse rheological characteristics compared to the other samples. Moisture content, specific volume, texture and crumb grain characteristics are the major quality attributes of bread products. The different sample analyzed, “Coppia Ferrarese”, “Pane Comune Romagnolo” and “Filone Terra di San Marino”, showed a decrease of crumb moisture and an increase in hardness over the storage time. Parameters such as cohesiveness and springiness, evaluated by TPA that are indicator of quality of fresh bread, decreased during the storage. By using empirical rheological tests we found several differences among the samples, due to the different ingredients used in formulation and the different process adopted to prepare the sample, but since these products are handmade, the differences could be account as a surplus value. In conclusion small deformation (in fundamental units) and large deformation methods showed a significant role in monitoring the influence of different ingredients used in formulation, different processing and storage conditions on dough viscoelastic performance and on final product. Finally the knowledge of formulation, processing and storage conditions together with the evaluation of structural and rheological characteristics is fundamental for the study of complex matrices like bakery products, where numerous variable can influence their final quality (e.g. raw material, bread-making procedure, time and temperature of the fermentation and baking).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALICE experiment at the LHC has been designed to cope with the experimental conditions and observables of a Quark Gluon Plasma reaction. One of the main assets of the ALICE experiment with respect to the other LHC experiments is the particle identification. The large Time-Of-Flight (TOF) detector is the main particle identification detector of the ALICE experiment. The overall time resolution, better that 80 ps, allows the particle identification over a large momentum range (up to 2.5 GeV/c for pi/K and 4 GeV/c for K/p). The TOF makes use of the Multi-gap Resistive Plate Chamber (MRPC), a detector with high efficiency, fast response and intrinsic time resoltion better than 40 ps. The TOF detector embeds a highly-segmented trigger system that exploits the fast rise time and the relatively low noise of the MRPC strips, in order to identify several event topologies. This work aims to provide detailed description of the TOF trigger system. The results achieved in the 2009 cosmic-ray run at CERN are presented to show the performances and readiness of TOF trigger system. The proposed trigger configuration for the proton-proton and Pb-Pb beams are detailed as well with estimates of the efficiencies and purity samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents and discusses TEDA, an algorithm for the automatic detection in real-time of tsunamis and large amplitude waves on sea level records. TEDA has been developed in the frame of the Tsunami Research Team of the University of Bologna for coastal tide gauges and it has been calibrated and tested for the tide gauge station of Adak Island, in Alaska. A preliminary study to apply TEDA to offshore buoys in the Pacific Ocean is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The worldwide demand for a clean and low-fuel-consuming transport promotes the development of safe, high energy and power electrochemical storage and conversion systems. Lithium-ion batteries (LIBs) are considered today the best technology for this application as demonstrated by the recent interest of automotive industry in hybrid (HEV) and electric vehicles (EV) based on LIBs. This thesis work, starting from the synthesis and characterization of electrode materials and the use of non-conventional electrolytes, demonstrates that LIBs with novel and safe electrolytes and electrode materials meet the targets of specific energy and power established by U.S.A. Department of Energy (DOE) for automotive application in HEV and EV. In chapter 2 is reported the origin of all chemicals used, the description of the instruments used for synthesis and chemical-physical characterizations, the electrodes preparation, the batteries configuration and the electrochemical characterization procedure of electrodes and batteries. Since the electrolyte is the main critical point of a battery, in particular in large- format modules, in chapter 3 we focused on the characterization of innovative and safe electrolytes based on ionic liquids (characterized by high boiling/decomposition points, thermal and electrochemical stability and appreciable conductivity) and mixtures of ionic liquid with conventional electrolyte. In chapter 4 is discussed the microwave accelerated sol–gel synthesis of the carbon- coated lithium iron phosphate (LiFePO 4 -C), an excellent cathode material for LIBs thanks to its intrinsic safety and tolerance to abusive conditions, which showed excellent electrochemical performance in terms of specific capacity and stability. In chapter 5 are presented the chemical-physical and electrochemical characterizations of graphite and titanium-based anode materials in different electrolytes. We also characterized a new anodic material, amorphous SnCo alloy, synthetized with a nanowire morphology that showed to strongly enhance the electrochemical stability of the material during galvanostatic full charge/discharge cycling. Finally, in chapter 6, are reported different types of batteries, assembled using the LiFePO 4 -C cathode material, different anode materials and electrolytes, characterized by deep galvanostatic charge/discharge cycles at different C-rates and by test procedures of the DOE protocol for evaluating pulse power capability and available energy. First, we tested a battery with the innovative cathode material LiFePO 4 -C and conventional graphite anode and carbonate-based electrolyte (EC DMC LiPF 6 1M) that demonstrated to surpass easily the target for power-assist HEV application. Given that the big concern of conventional lithium-ion batteries is the flammability of highly volatile organic carbonate- based electrolytes, we made safe batteries with electrolytes based on ionic liquid (IL). In order to use graphite anode in IL electrolyte we added to the IL 10% w/w of vinylene carbonate (VC) that produces a stable SEI (solid electrolyte interphase) and prevents the graphite exfoliation phenomenon. Then we assembled batteries with LiFePO 4 -C cathode, graphite anode and PYR 14 TFSI 0.4m LiTFSI with 10% w/w of VC that overcame the DOE targets for HEV application and were stable for over 275 cycles. We also assembled and characterized ―high safety‖ batteries with electrolytes based on pure IL, PYR 14 TFSI with 0.4m LiTFSI as lithium salt, and on mixture of this IL and standard electrolyte (PYR 14 TFSI 50% w/w and EC DMC LiPF 6 50% w/w), using titanium-based anodes (TiO 2 and Li 4 Ti 5 O 12 ) that are commonly considered safer than graphite in abusive conditions. The batteries bearing the pure ionic liquid did not satisfy the targets for HEV application, but the batteries with Li 4 Ti 5 O 12 anode and 50-50 mixture electrolyte were able to surpass the targets. We also assembled and characterized a lithium battery (with lithium metal anode) with a polymeric electrolyte based on poly-ethilenoxide (PEO 20 – LiCF 3 SO 3 +10%ZrO 2 ), which satisfied the targets for EV application and showed a very impressive cycling stability. In conclusion, we developed three lithium-ion batteries of different chemistries that demonstrated to be suitable for application in power-assist hybrid vehicles: graphite/EC DMC LiPF 6 /LiFePO 4 -C, graphite/PYR 14 TFSI 0.4m LiTFSI with 10% VC/LiFePO 4 -C and Li 4 T i5 O 12 /PYR 14 TFSI 50%-EC DMC LiPF 6 50%/LiFePO 4 -C. We also demonstrated that an all solid-state polymer lithium battery as Li/PEO 20 –LiCF 3 SO 3 +10%ZrO 2 /LiFePO 4 -C is suitable for application on electric vehicles. Furthermore we developed a promising anodic material alternative to the graphite, based on SnCo amorphous alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) der Firma Aerodyne ist eine Weiterentwicklung des Aerodyne Aerosolmassenspektrometers (Q-AMS). Dieses ist gut charakterisiert und kommt weltweit zum Einsatz. Beide Instrumente nutzen eine aerodynamische Linse, aerodynamische Partikelgrößenbestimmung, thermische Verdampfung und Elektronenstoß-Ionisation. Im Gegensatz zum Q-AMS, wo ein Quadrupolmassenspektrometer zur Analyse der Ionen verwendet wird, kommt beim ToF-AMS ein Flugzeit-Massenspektrometer zum Einsatz. In der vorliegenden Arbeit wird anhand von Laborexperimenten und Feldmesskampagnen gezeigt, dass das ToF-AMS zur quantitativen Messung der chemischen Zusammensetzung von Aerosolpartikeln mit hoher Zeit- und Größenauflösung geeignet ist. Zusätzlich wird ein vollständiges Schema zur ToF-AMS Datenanalyse vorgestellt, dass entwickelt wurde, um quantitative und sinnvolle Ergebnisse aus den aufgenommenen Rohdaten, sowohl von Messkampagnen als auch von Laborexperimenten, zu erhalten. Dieses Schema basiert auf den Charakterisierungsexperimenten, die im Rahmen dieser Arbeit durchgeführt wurden. Es beinhaltet Korrekturen, die angebracht werden müssen, und Kalibrationen, die durchgeführt werden müssen, um zuverlässige Ergebnisse aus den Rohdaten zu extrahieren. Beträchtliche Arbeit wurde außerdem in die Entwicklung eines zuverlässigen und benutzerfreundlichen Datenanalyseprogramms investiert. Dieses Programm kann zur automatischen und systematischen ToF-AMS Datenanalyse und –korrektur genutzt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The improvement of devices provided by Nanotechnology has put forward new classes of sensors, called bio-nanosensors, which are very promising for the detection of biochemical molecules in a large variety of applications. Their use in lab-on-a-chip could gives rise to new opportunities in many fields, from health-care and bio-warfare to environmental and high-throughput screening for pharmaceutical industry. Bio-nanosensors have great advantages in terms of cost, performance, and parallelization. Indeed, they require very low quantities of reagents and improve the overall signal-to-noise-ratio due to increase of binding signal variations vs. area and reduction of stray capacitances. Additionally, they give rise to new challenges, such as the need to design high-performance low-noise integrated electronic interfaces. This thesis is related to the design of high-performance advanced CMOS interfaces for electrochemical bio-nanosensors. The main focus of the thesis is: 1) critical analysis of noise in sensing interfaces, 2) devising new techniques for noise reduction in discrete-time approaches, 3) developing new architectures for low-noise, low-power sensing interfaces. The manuscript reports a multi-project activity focusing on low-noise design and presents two developed integrated circuits (ICs) as examples of advanced CMOS interfaces for bio-nanosensors. The first project concerns low-noise current-sensing interface for DC and transient measurements of electrophysiological signals. The focus of this research activity is on the noise optimization of the electronic interface. A new noise reduction technique has been developed so as to realize an integrated CMOS interfaces with performance comparable with state-of-the-art instrumentations. The second project intends to realize a stand-alone, high-accuracy electrochemical impedance spectroscopy interface. The system is tailored for conductivity-temperature-depth sensors in environmental applications, as well as for bio-nanosensors. It is based on a band-pass delta-sigma technique and combines low-noise performance with low-power requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the thesis we present the implementation of the quadratic maximum likelihood (QML) method, ideal to estimate the angular power spectrum of the cross-correlation between cosmic microwave background (CMB) and large scale structure (LSS) maps as well as their individual auto-spectra. Such a tool is an optimal method (unbiased and with minimum variance) in pixel space and goes beyond all the previous harmonic analysis present in the literature. We describe the implementation of the QML method in the {\it BolISW} code and demonstrate its accuracy on simulated maps throughout a Monte Carlo. We apply this optimal estimator to WMAP 7-year and NRAO VLA Sky Survey (NVSS) data and explore the robustness of the angular power spectrum estimates obtained by the QML method. Taking into account the shot noise and one of the systematics (declination correction) in NVSS, we can safely use most of the information contained in this survey. On the contrary we neglect the noise in temperature since WMAP is already cosmic variance dominated on the large scales. Because of a discrepancy in the galaxy auto spectrum between the estimates and the theoretical model, we use two different galaxy distributions: the first one with a constant bias $b$ and the second one with a redshift dependent bias $b(z)$. Finally, we make use of the angular power spectrum estimates obtained by the QML method to derive constraints on the dark energy critical density in a flat $\Lambda$CDM model by different likelihood prescriptions. When using just the cross-correlation between WMAP7 and NVSS maps with 1.8° resolution, we show that $\Omega_\Lambda$ is about the 70\% of the total energy density, disfavouring an Einstein-de Sitter Universe at more than 2 $\sigma$ CL (confidence level).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PhD thesis at hand consists of three parts and describes the petrogenetic evolution of Uralian-Alaskan-type mafic ultramafic complexes in the Ural Mountains, Russia. Uralian-Alaskan-type mafic-ultramafic complexes are recognized as a distinct class of intrusions. Characteristic petrologic features are the concentric zonation of a central dunite body grading outward into wehrlite, clinopyroxenite and gabbro, the absence of orthopyroxene and frequently occurring platinum group element (PGE) mineralization. In addition, the presence of ferric iron-rich spinel discriminates Uralian-Alaskan-type complexes from most other mafic ultramafic rock assemblages. The studied Uralian-Alaskan-type complexes (Nizhnii Tagil, Kytlym and Svetley Bor) belong to the southern part of a 900 km long, N–S-trending chain of similar intrusions between the Main Uralian Fault to the west and the Serov-Mauk Fault to the east. The first chapter of this thesis studies the evolution of the ultramafic rocks tracing the compositional variations of rock forming and accessory minerals. The comparison of the chemical composition of olivine, clinopyroxene and chromian spinel from the Urals with data from other localities indicates that they are unique intrusions having a characteristic spinel and clinopyroxene chemistry. Laser ablation-ICPMS (LA-ICPMS ) analyses of trace element concentrations in clinopyroxene are used to calculate the composition of their parental melt which is characterized by enriched LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). A subduction-related geotectonic setting is indicated by a positive anomaly for Sr and negative anomalies for Ti, Zr and Hf. The mineral compositions monitor the evolution of the parental magmas and decipher differences between the studied complexes. In addition, the observed variation in LREE/HREE (for example La/Lu = 2-24) can be best explained with the model of an episodically replenished and erupted open magma chamber system with the extensive fractionation of olivine, spinel and clinopyroxene. The data also show that ankaramites in a subduction-related geotectonic setting could represent parental magmas of Uralian-Alaskan-type complexes. The second chapter of the thesis discusses the chemical variation of major and trace elements in rock-forming minerals of the mafic rocks. Electron microprobe and LA-ICPMS analyses are used to quantitatively describe the petrogenetic relationship between the different gabbroic lithologies and their genetic link to the ultramafic rocks. The composition of clinopyroxene identifies the presence of melts with different trace element abundances on the scale of a thin section and suggests the presence of open system crustal magma chambers. Even on a regional scale the large variation of trace element concentrations and ratios in clinopyroxene (e.g. La/Lu = 3-55) is best explained by the interaction of at least two fundamentally different magma types at various stages of fractionation. This requires the existence of a complex magma chamber system fed with multiple pulses of magmas from at least two different coeval sources in a subduction-related environment. One source produces silica saturated Island arc tholeiitic melts. The second source produces silica undersaturated, ultra-calcic, alkaline melts. Taken these data collectively, the mixing of the two different parental magmas is the dominant petrogenetic process explaining the observed chemical variations. The results further imply that this is an intrinsic feature of Uralian-Alaskan-type complexes and probably of many similar mafic-ultramafic complexes world-wide. In the third chapter of this thesis the major element composition of homogeneous and exsolved spinel is used as a petrogenetic indicator. Homogeneous chromian spinel in dunites and wehrlites monitors the fractionation during the early stages of the magma chamber and the onset of clinopyroxene fractionation as well as the reaction of spinel with interstitial liquid. Exsolved spinel is present in mafic and ultramafic rocks from all three studied complexes. Its composition lies along a solvus curve which defines an equilibrium temperature of 600°C, given that spinel coexists with olivine. This temperature is considered to be close to the temperature of the host rocks into which the studied Uralian-Alaskan-type complexes intruded. The similarity of the exsolution temperatures in the different complexes over a distance of several hundred kilometres implies a regional tectonic event that terminated the exsolution process. This event is potentially associated with the final exhumation of the Uralian-Alaskan-type complexes along the Main Uralian Fault and the Serov-Mauk Fault in the Uralian fold belt.