920 resultados para clause combining
Resumo:
The Your Building Project to build a website as the business and technical guide to sustainable commercial buildings has now been completed. The site is available at www.yourbuilding.org. The project was delivered to meet the requirements of the funding agreement between the Commonwealth of Australia represented by the Department of the Environment and Heritage (now Department of the Environment and Water Resources) and the Cooperative Research Centre for Construction Innovation (Construction Innovation).
Resumo:
This feasibility study was established to investigate the application of the concept of ‘best value’ in construction procurement in Australia. In the case of ‘best value’ in the business enterprise, ‘best value’ is that which returns greatest value to the business enterprise’s shareholders. However, in the case of the public sector, ‘best value’ is more complex. For that reason, this research project focuses mainly on public sector construction project procurement.
Resumo:
This is the first interim report on the Cost of Tendering component of the Best Value project. This report provides some insight from ‘cost of tendering’ literature and discussions with CRC partners. With the completion of this scoping project, sufficient understanding will be developed to determine the need for more detailed research. This scoping project does not intend to provide guidance for the way to change the tendering process, although a need will be demonstrated for control and reduction of cost of tendering.
Resumo:
This first interim report on ‘best value’ reviewed the academic literature relating to ‘best value’ and illustrated the varying interpretations that the concept of ‘best value’ has attracted. It also examined current state of the literature on best value in construction project procurement. ‘Best value’ was explored from the perspective of both the business enterprise and public sector. It was concluded that ‘best value’ in the public sector is considerably more complex. This second interim report explores how ‘best value’ has been implemented in the UK. Focus is directed towards the UK, particularly Scotland’s approach to examine the complexity of implementation of ‘best value’ in the public sector context. Scotland has been recognised as a leader in the field of ‘best value’ in the public sector (Curry, 1999; Wisniewski and Stewart, 2001, 2004; Jaconelli and Sheffield, 2000)
Resumo:
The supply chain in the construction industry is less well developed than in manufacturing. This project proposes to bring world class international business profile benchmarking to assist in the development of small and medium sized (SME) subcontractors. This approach has been widely used in Europe and has enabled significant sectoral supply chain development. The construction SME supply chain is a critical component in the delivery of all construction projects. Furthermore, it undermines the sustainability of the individual enterprise and puts construction projects and jobs at risk. Government procurement agencies view this as construction industry capacity building. In the developed and developing worlds, SME sector firms routinely make up over 95% of companies. The construction industry supply chain is dominated by such firms. Supply chain development and capacity building have been largely neglected in the construction sector, despite rhetoric about the importance of the SME sector to the economy This project seeks to investigate the potential to apply the International Business Profile Benchmarking instrument with the construction industry. The project recognises that there are many facets to the quest for continuous improvement in the construction industry and in wider workplace in general. This first interim report reviews the international literature relating to construction industry performance measurement and performance improvement. A summary of the findings follow. ‘Best value’ is dealt with in a separate interim report.
Resumo:
This is the final report of research project 2002-057-C: Enabling Team Collaboration with Pervasive and Mobile Computing. The research project was carried out by the Australian Cooperative Research Centre for Construction Innovation and has two streams that consider the use of pervasive computing technologies in two different contexts. The first context was the on-site deployment of mobile computing devices, where as the second context was the use and development of intelligent rooms based on sensed environments and new human-computer interfaces (HCI) for collaboration in the design office. The two streams present a model of team collaboration that relies on continues communication to people and information to reduce information leakage. This report consists of five sections: (1) Introduction; (2) Research Project Background; (3) Project Implementation; (4) Case Studies and Outcomes; and (5) Conclusion and Recommendation. Introduction in Section 1 presents a brief description of the research project including general research objectives and structure. Section 2 introduces the background of the research and detailed information regarding project participants, objectives and significance, and also research methodology. Review of all research activities such as literature review and case studies are summarised in Project Implementation in Section 3. Following this, in Section 4 the report then focuses on analysing the case studies and presents their outcomes. Conclusion and recommendation of the research project are summarised in Section 5. Other information to support the content of the report such as research project schedule is provided in Appendices. The purpose of the final project report is to provide industry partners with detailed information on the project activities and methodology such as the implementation of pervasive computing technologies in the real contexts. The report summarises the outcomes of the case studies and provides necessary recommendation to industry partners of using new technologies to support better project collaboration.
Resumo:
This project report presents the results of a study on wireless communication data transfer rates for a mobile device running a custombuilt construction defect reporting application. The study measured the time taken to transmit data about a construction defect, which included digital imagery and text, in order to assess the feasibility of transferring various types and sizes of data and the ICT-supported construction management applications that could be developed as a consequence. Data transfer rates over GPRS through the Telstra network and WiFi over a private network were compared. Based on the data size and data transfer time, the rate of transfer was calculated to determine the actual data transmission speeds at which the information was being sent using the wireless mobile communication protocols. The report finds that the transmission speeds vary considerably when using GPRS and can be significantly slower than what is advertised by mobile network providers. While WiFi is much faster than GPRS, the limited range of WiFi limits the protocol to residential-scale construction sites.
Resumo:
Construction is an information intensive industry in which the accuracy and timeliness of information is paramount. It observed that the main communication issue in construction is to provide a method to exchange data between the site operation, the site office and the head office. The information needs under consideration are time critical to assist in maintaining or improving the efficiency at the jobsite. Without appropriate computing support this may increase the difficulty of problem solving. Many researchers focus their research on the usage of mobile computing devices in the construction industry and they believe that mobile computers have the potential to solve some construction problems that leads to reduce overall productivity. However, to date very limited observation has been conducted in terms of the deployment of mobile computers for construction workers on-site. By providing field workers with accurate, reliable and timely information at the location where it is needed, it will support the effectiveness and efficiency at the job site. Bringing a new technology into construction industry is not only need a better understanding of the application, but also need a proper preparation of the allocation of the resources such as people, and investment. With this in mind, an accurate analysis is needed to provide clearly idea of the overall costs and benefits of the new technology. A cost benefit analysis is a method of evaluating the relative merits of a proposed investment project in order to achieve efficient allocation of resources. It is a way of identifying, portraying and assessing the factors which need to be considered in making rational economic choices. In principle, a cost benefit analysis is a rigorous, quantitative and data-intensive procedure, which requires identification all potential effects, categorisation of these effects as costs and benefits, quantitative estimation of the extent of each cost and benefit associated with an action, translation of these into a common metric such as dollars, discounting of future costs and benefits into the terms of a given year, and summary of all cost and benefit to see which is greater. Even though many cost benefit analysis methodologies are available for a general assessment, there is no specific methodology can be applied for analysing the cost and benefit of the application of mobile computing devices in the construction site. Hence, the proposed methodology in this document is predominantly adapted from Baker et al. (2000), Department of Finance (1995), and Office of Investment Management (2005). The methodology is divided into four main stages and then detailed into ten steps. The methodology is provided for the CRC CI 2002-057-C Project: Enabling Team Collaboration with Pervasive and Mobile Computing and can be seen in detail in Section 3.
Resumo:
The application of Information and Communication Technology (ICT) in construction industry has been recognised widely by some practitioners and researchers for the last several years. During the 1990s the international construction industry started using with the increasing confidence information and communication technology. The use of e-mail became usual and web-sites were established for marketing purposes. Intranets and extranets were also established to facilitate communication within companies and throughout their branches. One of the important applications of the ICT in construction industry was the use of mobile computing devices to achieve better communication and data transmission between construction sites and offices.
Final : report assessing risk and variation in maintenance and rehabilitation costs for road network
Resumo:
This report presents the results of research projects conducted by The Australian Cooperative Research Centre for Construction Innovation, Queensland University of Technology, RMIT University, Queensland Government Department of Main Roads and Queensland Department of Public Works. The research projects aimed at developing a methodology for assessing variation and risk in investment in road network, including the application of the method in assessing road network performance and maintenance and rehabilitation costs for short- and long-term future investment.
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
In the previous research CRC CI 2001-010-C “Investment Decision Framework for Infrastructure Asset Management”, a method for assessing variation in cost estimates for road maintenance and rehabilitation was developed. The variability of pavement strength collected from a 92km national highway was used in the analysis to demonstrate the concept. Further analysis was conducted to identify critical input parameters that significantly affect the prediction of road deterioration. In addition to pavement strength, rut depth, annual traffic loading and initial roughness were found to be critical input parameters for road deterioration. This report presents a method developed to incorporate other critical parameters in the analysis, such as unit costs, which are suspected to contribute to a certain degree to cost estimate variation. Thus, the variability of unit costs will be incorporated in this analysis. Bruce Highway located in the tropical east coast of Queensland has been identified to be the network for the analysis. This report presents a step by step methodology for assessing variation in road maintenance and rehabilitation cost estimates.
Resumo:
Reliable budget/cost estimates for road maintenance and rehabilitation are subjected to uncertainties and variability in road asset condition and characteristics of road users. The CRC CI research project 2003-029-C ‘Maintenance Cost Prediction for Road’ developed a method for assessing variation and reliability in budget/cost estimates for road maintenance and rehabilitation. The method is based on probability-based reliable theory and statistical method. The next stage of the current project is to apply the developed method to predict maintenance/rehabilitation budgets/costs of large networks for strategic investment. The first task is to assess the variability of road data. This report presents initial results of the analysis in assessing the variability of road data. A case study of the analysis for dry non reactive soil is presented to demonstrate the concept in analysing the variability of road data for large road networks. In assessing the variability of road data, large road networks were categorised into categories with common characteristics according to soil and climatic conditions, pavement conditions, pavement types, surface types and annual average daily traffic. The probability distributions, statistical means, and standard deviation values of asset conditions and annual average daily traffic for each type were quantified. The probability distributions and the statistical information obtained in this analysis will be used to asset the variation and reliability in budget/cost estimates in later stage. Generally, we usually used mean values of asset data of each category as input values for investment analysis. The variability of asset data in each category is not taken into account. This analysis method demonstrated that it can be used for practical application taking into account the variability of road data in analysing large road networks for maintenance/rehabilitation investment analysis.
Resumo:
Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.