975 resultados para chromosome substitution
Resumo:
Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^
Resumo:
Prostate cancer (PC) is a significant economic and health burden in the U.S. and Europe but its causes are largely unknown. The most significant risk factors (after gender) are age and family history of the disease. A gene with high penetrance but low frequency on chromosome 1q, HPC 1, has been suggested to cause a proportion of the familial aggregation of PC but other more common genes, conferring less risk, are also thought to contribute to disease predisposition. We have pursued a strategy to study both types of genetic risk in PC. To identify high penetrance genes, affected men from thirteen families have been genotyped for genetic linkage analysis at six microsatellite markers spanning 45 cM of 1q24-25. Both LOD score and non-parametric statistics provide no significant support for HPC1 in this genomic region, although 3 of the families did combine to produce a LOD score of 0.9. These families will be included in a genome wide search for other PC predisposition genes as part of a multinational collaboration.^ For study of common genetic factors in PC development, leukocyte DNA samples from an unselected series of 55 patients and 67 controls have been examined for genetic differences in two other candidate genes, the androgen receptor gene, hAR, at Xq11-12, and the vitamin D receptor gene, hVDR, at 12q12-14. hAR was typed for two trinucleotide repeat length polymorphisms, (CAG)$\rm\sb{n}$ and (GGC)$\rm\sb{n},$ encoding polyglutamine and polyglycine tracts, respectively, which have been implicated in PC susceptibility. These data, combined with similarly processed patients and controls from the U.K. show no consistent association of allele length with PC risk. A novel finding, however, has been a significant association between the number of GGC repeats and the length of time between diagnosis and relapse in stage T1-T4 Caucasian patients irrespective of therapy and age of the patient. Of 49 patients who relapsed out of 108 entering the study, those with 16 or fewer GGC repeats had an average relapse-free-period of 101 (+/$-$7.7) months while for those with more than 16 repeats the period averaged 48 (+/$-$2.9) months, a difference of 2.1 fold or 4.4 years.^ The second gene, hVDR, was genotyped at two polymorphisms, a synonymous C/T substitution in exon 9 identified by differential TaqI enzymatic digestion and a variable length polyA tract in the 3$\sp\prime$ UTR. Although these polymorphisms are in strong linkage disequilibrium only the polyA region showed a possible association with PC risk. Men homozygous for alleles with fewer than 18 A's had an increased risk (OR = 3.0, p = 0.0578) compared to controls. This result is opposite to the findings of others and may either indicate off-setting random errors which together balance out to no significant overall effect or reflect more complex genetic and/or environmental associations.^ Overall, this research suggests that single gene familial predisposition may be less prominent in PC than in other cancers and that the characteristics of PC pathology may be useful in identifying the effects of common genetic factors. ^
Resumo:
Placental formation and genomic imprinting are two important features of embryonic development in placental mammals. Genetic studies have demonstrated that imprinted genes play a prominent role in regulating placental formation. In marsupials, mice and humans, the paternally derived X chromosome is preferentially inactivated in the placental tissues of female embryos. This special form of genomic imprinting may have evolved under the same selective forces as autosomal imprinted genes. This chromosomal imprinting phenomenon predicts the existence of maternally expressed X-linked genes that regulate placental development.^ In this study, an X-linked homeobox gene, designated Esx1 has been isolated. During embryogenesis, Esx1 was expressed in a subset of placental tissues and regulates formation of the chorioallantoic placenta. Esx1 acted as an imprinted gene. Heterozygous female mice that inherit an Esx1-null allele from their father developed normally. However, heterozygous females that inherit the Esx1 mutation from their mother were born 20% smaller than normal and had an identical phenotype to hemizygous mutant males and homozygous mutant females. Surprisingly, although Esx1 mutant embryos were initially comparable in size to wild-type controls at 13.5 days post coitum (E13.5) their placentas were significantly larger (51% heavier than controls). Defects in the morphogenesis of the labyrinthine layer were observed as early as E11.5. Subsequently, vascularization abnormalities developed at the maternal-fetal interface, causing fetal growth retardation. These results identify Esx1 as the first essential X-chromosome-imprinted regulator of placental development that influences fetal growth and may have important implications in understanding human placental insufficiency syndromes such as intrauterine growth retardation (IUGR). ^
Resumo:
Extensive experience with the analysis of human prophase chromosomes and studies into the complexity of prophase GTG-banding patterns have suggested that at least some prophase chromosomal segments can be accurately identified and characterized independently of the morphology of the chromosome as a whole. In this dissertation the feasibility of identifying and analyzing specified prophase chromosome segments was thus investigated as an alternative approach to prophase chromosome analysis based on whole chromosome recognition. Through the use of prophase idiograms at the 850-band-stage (FRANCKE, 1981) and a comparison system based on the calculation of cross-correlation coefficients between idiogram profiles, we have demonstrated that it is possible to divide the 24 human prophase idiograms into a set of 94 unique band sequences. Each unique band sequence has a banding pattern that is recognizable and distinct from any other non-homologous chromosome portion.^ Using chromosomes 11p and 16 thru 22 to demonstrate unique band sequence integrity at the chromosome level, we found that prophase chromosome banding pattern variation can be compensated for and that a set of unique band sequences very similar to those at the idiogram level can be identified on actual chromosomes.^ The use of a unique band sequence approach in prophase chromosome analysis is expected to increase efficiency and sensitivity through more effective use of available banding information. The use of a unique band sequence approach to prophase chromosome analysis is discussed both at the routine level by cytogeneticists and at an image processing level with a semi-automated approach to prophase chromosome analysis. ^
Resumo:
DNA mediated gene transfection is an important tool for moving and isolating genes from one cell type and putting them into a foreign genetic background. DNA transfection studies have been done routinely in many laboratories to identify and isolate transforming sequences in human tumors and tumor cell lines. A second technique, microcell-mediated chromosome transfer, allows the transfer of small numbers of intact human chromosome from one cell to another. This work was done to compare the efficiency of these two techniques in the transformation of NIH 3T3 mouse fibroblast cells.^ My intent in comparing these two techniques was to see if there was a difference in the transforming capability of DNA which has been purified of all associated protein and RNAs, and that of DNA which is introduced into a cell in its native form, the chromosome. If chromosomal sequences were capable of transforming the 3T3 cells in culture, the method could then be used as a way to isolate the relevant tumorigenic chromosomes from human tumors.^ The study shows, however, that even for those cell lines that contain transforming sequences identified by DNA-mediated gene transfer, those same sequences were unable to transform 3T3 cells when introduced to the cells by somatic fusion of human tumor microcells. I believe that the human transforming sequences in their original genetic conformation are not recognized by the mouse cell as genes which should be expressed; therefore, no noticeable transformation event was selected by this technique. ^
Resumo:
Fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates harbor two new staphylococcal cassette chromosome mec (SCCmec) elements that belong to class A, allotype 3 (SCCmec II-III), and to the new allotype 5 (SCCmec VII). Analysis of the complete nucleotide sequences of the topoisomerase loci gyrB/gyrA and grlB/grlA revealed mutations involved in fluoroquinolone resistance.
Resumo:
Crosslinking of immunoglobulin E antibodies (IgE) bound at the surface of mast cells and subsequent mediator release is considered the most important trigger for allergic reactions. Therefore, the genetic control of IgE levels is studied in the context of allergic diseases, such as asthma, atopic rhinitis, or atopic dermatitis (AD). We performed genome-wide association studies in 161 Labrador Retrievers with regard to total and allergen-specific immunoglobulin E (IgE) levels. We identified a genome-wide significant association on CFA 5 with the antigen-specific IgE responsiveness to Acarus siro. We detected a second genome-wide significant association with respect to the antigen-specific IgE responsiveness to Tyrophagus putrescentiae at a different locus on chromosome 5. A. siro and T. putrescentiae both belong to the family Acaridae and represent so-called storage or forage mites. These forage mites are discussed as major allergen sources in canine AD. No obvious candidate gene for the regulation of IgE levels is located under the two association signals. Therefore our studies offer a chance of identifying a novel mechanism controlling the host's IgE response.
Resumo:
The recent development of a goat SNP genotyping microarray enables genome-wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome-wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non-synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss-of-function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the (496) Asp allele might possibly act in a dominant manner. The (496) Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.
Resumo:
The loci of the porcine tumour necrosis factor genes, alpha (TNFA) and beta (TNFB), have been chromosomally assigned by radioactive in situ hybridization. The genomic probes for TNFA and TNFB yielded signals above 7p11-q11, a region that has been shown earlier to carry the porcine major histocompatibility locus (SLA). These mapping data along with preliminary molecular studies suggest a genomic organization of the SLA that is similar to that of human and murine major histocompatibility complexes.
Resumo:
Men with good functional results following radical retropubic prostatectomy (RRP) and requiring radical cystectomy (RC) for subsequent bladder carcinoma seldom receive orthotopic bladder substitution. Four patients aged 62-72 years (median 67 years), who had undergone RRP for prostate cancer of stage pT2bN0M0 Gleason score 6 (n = 1), pT2cN0M0 Gleason score 5 and 6 (n = 2) and pT3bN0M0 Gleason score 7 (n = 1) 27 to 104 months before, developed urothelial bladder carcinoma treated with RC and ileal orthotopic bladder substitution. After radical prostatectomy three were continent and one had grade I stress incontinence, and three achieved intercourse with intracavernous alprostadil injections. Follow-up after RC ranged between 27 and 42 months (median 29 months). At the 24-month follow-up visit after RC daily urinary continence was total (0 pad) in one patient, two used one pad for mild leakage, and one was incontinent following endoscopic incision of anastomotic stricture. One patient died of progression of bladder carcinoma, while the other three are alive without evidence of disease. The three surviving patients continued to have sexual intercourse with intracavernous alprostadil injections. Men with previous RRP have a reasonable chance of maintaining a satisfactory functional outcome following RC and ileal orthotopic bladder substitution.
Resumo:
PURPOSE Continuous intraoperative norepinephrine infusion combined with restrictive deferred hydration improves surgical field visibility, and significantly decreases intraoperative blood loss and postoperative complications in patients undergoing radical cystectomy and urinary diversion. We determined whether the intraoperative fluid regimen would affect functional results (continence and erectile function) 1 year after orthotopic ileal bladder substitution. MATERIALS AND METHODS We analyzed a subgroup of 93 patients who received an ileal orthotopic bladder substitute. The subgroup was part of a randomized trial in 167 patients initially allocated to continuous norepinephrine administration starting with 2 μg/kg per hour combined with 1 ml/kg per hour initially and 3 ml/kg per hour crystalloid infusion after cystectomy (norepinephrine/low volume group of 51) or a standard crystalloid infusion of 6 ml/kg per hour throughout surgery (42 controls). We prospectively assessed daytime and nighttime continence, and erectile function 1 year postoperatively in the 93-patient subgroup. RESULTS Daytime continence was reported by 44 of 51 patients (86%) in the norepinephrine/low volume group and by 27 of 42 controls (64%) (p = 0.016), and nighttime continence was reported by 38 (75%) and 25 (60%), respectively (p = 0.077). Erectile function recovery was reported by 26 of 33 preoperatively potent patients (79%) in the norepinephrine/low volume group and by 11 of 29 controls (38%) (p = 0.002). CONCLUSIONS Patients who undergo radical cystectomy and orthotopic bladder substitution with continuous norepinephrine infusion and restrictive hydration during surgery have significantly better daytime continence and erectile function 1 year postoperatively.
Resumo:
The presence of congenital appendages (wattles) on the throat of goats is supposed to be under genetic control with a dominant mode of inheritance. Wattles contain a cartilaginous core covered with normal skin resembling early stages of extremities. To map the dominant caprine wattles (W) locus, we collected samples of 174 goats with wattles and 167 goats without wattles from nine different Swiss goat breeds. The samples were genotyped with the 53k goat SNP chip for a subsequent genome-wide association study. We obtained a single strong association signal on chromosome 10 in a region containing functional candidate genes for limb development and outgrowth. We sequenced the whole genomes of an informative family trio containing an offspring without wattles and its heterozygous parents with wattles. In the associated goat chromosome 10 region, a total of 1055 SNPs and short indels perfectly co-segregate with the W allele. None of the variants were perfectly associated with the phenotype after analyzing the genome sequences of eight additional goats. We speculate that the causative mutation is located in one of the numerous gaps in the current version of the goat reference sequence and/or represents a larger structural variant which influences the expression of the FMN1 and/or GREM1 genes. Also, we cannot rule out possible genetic or allelic heterogeneity. Our genetic findings support earlier assumptions that wattles are rudimentary developed extremities.