953 resultados para chemical technology
Resumo:
This paper explores the philosophical origins of appropriation of Information Systems (IS) using Marxian and other socio-cultural theory. It provides an in-depth examination of appropriation and its application in extant IS theory. We develop a three-tier model using Marx’s foundational concepts and from this generate four propositions that we test in an empirical example of IS in anesthesia. Using Marxian theory, this paper seeks common ground among existing theories of technology appropriation in IS research. This work contributes to IS research by (1) opening philosophical discussions on appropriation and the human ↔ technology nexus, (2) drawing on these varying perspectives to propose a general conceptualization of technology appropriation and (3) providing a starting point towards a general causal model of technology appropriation.
Resumo:
The molecules of the title compound, C16H16O2, display an intramolecular O—HO hydrogen bond between the hydroxyl donor and the ketone acceptor. Intermolecular C—Hπ interactions connect adjacent molecules into chains that propagate parallel to the ac diagonal. The chains are arranged in sheets, and molecules in adjacent sheets interact via intermolecular O—HO hydrogen bonds.
Resumo:
Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.