947 resultados para cell wall formation
Resumo:
Twenty coagulase-negative Staphylococcus strains displaying alpha-haemolysis (delta-haemolysin) on sheep-blood agar were isolated from the noses of different pigs in Switzerland. The strains were Gram-stain-positive, non-motile cocci, catalase-positive and coagulase-negative. Sequence analysis of the 16S rRNA gene, sodA, rpoB, dnaJ and hsp60 and phylogenetic characteristics revealed that the strains showed the closest relatedness to Staphylococcus microti CCM 4903(T) and Staphylococcus muscae DSM 7068(T). The strains can be differentiated from S. microti by the absence of mannose fermentation and arginine arylamidase and from S. muscae by the absence of beta-glucuronidase activity and production of alkaline phosphatase. The chosen type strain ARI 262(T) shared 20.1 and 31.9 % DNA relatedness with S. microti DSM 22147(T) and S. muscae CCM 4903(T), respectively, by DNA-DNA hybridization. iso-C(15 : 0), anteiso-C(15 : 0) and iso-C(17 : 0) were the most common fatty acids. Cell-wall structure analysis revealed the peptidoglycan type A3alpha l-Lys-Gly(2)-l-Ser-Gly (type A11.3). The presence of teichoic acid was determined by sequencing the N-acetyl-beta-d-mannosaminyltransferase gene tarA, which is involved in biosynthesis of ribitol teichoic acid. Menaquinone 7 (MK-7) was the predominant respiratory quinone. The G+C content of ARI 262(T) was 38.8 mol%. The isolated strains represent a novel species of the genus Staphylococcus, for which we propose the name Staphylococcus rostri sp. nov. The type strain is ARI 262(T) (=DSM 21968(T) =CCUG 57266(T)) and strain ARI 602 (=DSM 21969 =CCUG 57267) is a reference strain.
Resumo:
Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only on fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.
Resumo:
We describe the measurement, at 100 K, of the SIMS relative sensitivity factors (RSFs) of the main physiological cations Na+, K+, Mg2+, and Ca2+ in frozen-hydrated (F-H) ionic solutions. Freezing was performed by either plunge freezing or high-pressure freezing. We also report the measurement of the RSFs in flax fibers, which are a model for ions in the plant cell wall, and in F-H ionic samples, which are a model for ions in the vacuole. RSFs were determined under bombardment with neutral oxygen (FAB) for both the fibers and the F-H samples. We show that referencing to ice-characteristic secondary ions is of little value in determining RSFs and that referencing to K is preferable. The RSFs of Na relative to K and of Ca relative to Mg in F-H samples are similar to their respective values in fiber samples, whereas the RSFs of both Ca and Mg relative to K are lower in fibers than in F-H samples. Our data show that the physical factors important for the determination of the RSFs are not the same in F-H samples and in homogeneous matrixes. Our data show that it is possible to perform a SIMS relative quantification of the cations in frozen-hydrated samples with an accuracy on the order of 15%. Referencing to K permits the quantification of the ionic ratios, even when the absolute concentration of the referencing ion is unknown. This is essential for physiological studies of F-H biological samples.
Resumo:
Objectives: The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. Results: The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64 -each expressing the capsule polysaccharide 2 - were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. Conclusion: Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.
Resumo:
Vancomycin and gentamicin act synergistically against penicillin-resistant pneumococci in vitro and in experimental rabbit meningitis. The aim of the present study was to investigate the underlying mechanism of this synergism. The intracellular concentration of gentamicin was measured by using the following experimental setting. Bacterial cultures were incubated with either gentamicin alone or gentamicin plus vancomycin for a short period (15 min). The gentamicin concentration was determined before and after grinding of the cultures by using the COBAS INTEGRA fluorescence polarization system (Roche). The grinding efficacies ranged between 44 and 54%, as determined by viable cell counts. In the combination regimen the intracellular concentration of gentamicin increased to 186% compared to that achieved with gentamicin monotherapy. These data suggest that the synergy observed in vivo and in vitro is based on an increased intracellular penetration of the aminoglycoside, probably due to the effect of vancomycin on the permeability of the cell wall.
Resumo:
The present study examined the mechanism by which bacterial cell walls from two gram-positive meningeal pathogens, Streptococcus pneumoniae and the group B streptococcus, induced neuronal injury in primary cultures of rat brain cells. Cell walls from both organisms produced cellular injury to similar degrees in pure astrocyte cultures but not in pure neuronal cultures. Cell walls also induced nitric oxide production in cultures of astrocytes or microglia. When neurons were cultured together with astrocytes or microglia, the cell walls of both organisms became toxic to neurons. L-NAME, a nitric oxide synthase inhibitor, protected neurons from cell wall-induced toxicity in mixed cultures with glia, as did dexamethasone. In contrast, an excitatory amino acid antagonist (MK801) had no effect. Low concentrations of cell walls from either gram-positive pathogen added together with the excitatory amino acid glutamate resulted in synergistic neurotoxicity that was inhibited by L-NAME. The induction of nitric oxide production and neurotoxicity by cell walls was independent of the presence of serum, whereas endotoxin exhibited these effects only in the presence of serum. We conclude that gram-positive cell walls can cause toxicity in neurons by inducing the production of nitric oxide in astrocytes and microglia.
Resumo:
The toxicity of pneumococci and endotoxin in primary cultures of rat neurons, astrocytes, and microglia and in a human astrocyte and two human glial cell lines was determined. Heat-inactivated, rough pneumococci (up to 10(8) cfu/mL) or their cell wall (up to 50 micrograms/mL) produced dose-dependent toxicity after 48 h in microglial cells and to a lesser extent in astrocytes but not in neurons. Toxicity was similar for equivalent doses of heat-inactivated organisms and pneumococcal cell wall, but time-course experiments showed significant differences between the two stimuli. Endotoxin at concentrations of up to 5 micrograms/mL did not induce significant toxicity in any of the cells. Thus, pneumococci can induce toxicity in two brain cell types, microglia and astrocytes, and the pneumococcal cell wall appears to mediate toxicity. Direct toxic effects of bacteria on brain cells may in part be responsible for brain injury during meningitis.
Resumo:
Detailed studies of pharmacodynamic principles relevant to the therapy of bacterial meningitis are difficult to perform in man, while the rabbit model of bacterial meningitis has proved to be extremely valuable and has led to insights that appear relevant for the treatment of humans. Most importantly in the light of the restricted penetration of antibiotics into the CSF, animal studies have shown that in meningitis there is a dose-response curve between the CSF concentrations achieved by antibiotics and their bactericidal activity. This appears to be true for all classes of antibiotics thus far examined, including the beta-lactams, which do not show such a dose-response behaviour in other infections. Only CSF concentrations that exceed the MBC of the infecting organism by at least 10-30-fold achieve consistent and rapid bactericidal activity. Such rapid bactericidal activity is a requirement for successful therapy with beta-lactams and can be impaired with certain antibiotics by the specific conditions in infected CSF (protein content; acidic pH; slow-growing bacteria). However, rapid antibiotic killing of the infecting organisms may not be without adverse effects either. Some antibiotics, particularly beta-lactams lead to the brisk liberation of bacterial cell wall components (e.g. endotoxin, in the case of Gram-negative organisms) which have an inflammatory effect on the host and can lead to a temporary deterioration of the disease. Dexamethasone, when administered with the antibiotic, can prevent some of the adverse effects of rapid bacterial lysis.
Resumo:
To identify neurotoxic factors in meningitis, a neuronal cell line (HN33.1) was exposed to cerebrospinal fluid (CSF) obtained from rabbits with pneumococcal meningitis or Escherichia coli meningitis or 2 h and 6 h after meningitis was induced by proinflammatory bacterial products (pneumococcal cell walls, endotoxin). CSF from all types of meningitis induced similar degrees of cytotoxicity. When a soluble tumor necrosis factor (TNF) receptor that completely blocked TNF-mediated toxicity at 10(-7) M was used, all toxicity in meningitis caused by E. coli, endotoxin, or pneumococcal cell wall administration (2 h afterwards) was mediated by TNF. In contrast, CSF from animals with meningitis caused by live pneumococci or pneumococcal cell wall injection (6 h afterwards) retained cytotoxicity in the presence of the TNF receptor. Thus, in established pneumococcal meningitis, but not in the other forms of meningitis, TNF is not the only component toxic in this neuronal cell line.
Resumo:
Differences in cytochemical and pathophysiologic abnormalities in experimental meningitis caused by pneumococcal strains A, B, and C were determined. Strain C produced the most severe abnormalities of cerebrospinal fluid (CSF) concentrations of lactate (P less than .01), protein (P less than .02), and glucose (P less than .01), CSF white blood cell count (P less than .04), cerebral blood flow (P less than .02), and clinical signs (P less than .05). Brain edema occurred only with strains A anc C, with no association with disease severity; intracranial hypertension was also independent of disease severity. Strain B, not C, achieved the highest bacterial titers in the CSF (P less than .005). The widely different abilities of strains of Streptococcus pneumoniae to induce intracranial abnormalities suggest that virulence determinants affect not only evasion of defense during colonization and invasion, as shown in other models, but also determine the course of disease once infection has been established. Differences of cell-wall metabolism among pneumococcal strains may play a role in this latter phase of the development of meningitis.
Resumo:
A number of advances in our understanding of the pathophysiology of bacterial meningitis have been made in recent years. In vivo studies have shown that bacterial cell wall fragments and endotoxins are highly active components, independent of the presence of viable bacteria in the subarachnoid space. Their presence in the cerebrospinal fluid is associated with the induction of inflammation and with the development of brain edema and increased intracranial pressure. Antimicrobial therapy may cause an additional increase of harmful bacterial products in the cerebrospinal fluid and thereby potentiate these pathophysiological alterations. These changes may contribute to the development of brain damage during meningitis. Some promising experimental work has been directed toward counteracting the above phenomena with non-steroidal or steroidal anti-inflammatory agents as well as with monoclonal antibodies. Although considerable advances have been made, further research needs to be done in these areas to improve the prognosis of bacterial meningitis.
Resumo:
Bioplastics are polymers (such as polyesters) produced from bacterial fermentations that are biodegradable and nonhazardous. They are produced by a wide variety of bacteria and are made only when stress conditions allow, such as when nutrient levels are low, more specifically levels of nitrogen and oxygen. These stress conditions cause certain bacteria to build up excess carbon deposits as energy reserves in the form of polyhydroxyalkanoates (PHAs). PHAs can be extracted and formed into actual plastic with the same strength of conventional, synthetic-based plastics without the need to rely on foreign petroleum. The overall goal of this project was to select for a bacteria that could grow on sugars found in the lignocellulosic biomass, and get the bacteria to produce PHAs and peptidoglycan. Once this was accomplished the goal was to extract PHAs and peptidoglycan in order to make a stronger more rigid plastic, by combing them into a co-polymer. The individual goals of this project were to: (1) Select and screen bacteria that are capable of producing PHAs by utilizing the carbon/energy sources found in lignocellulosic biomass; (2) Maximize the utilization of those sugars present in woody biomass in order to produce optimal levels of PHAs. (3) Use room temperature ionic liquids (RTILs) in order to separate the cell membrane and peptidoglycan, allowing for better extraction of PHAs and more intact peptidoglycan. B. megaterium a Gram-positive PHA-producing bacterium was selected for study in this project. It was grown on a variety of different substrates in order to maximize both its growth and production of PHAs. The optimal conditions were found to be 30°C, pH 6.0 and sugar concentration of either 30g/L glucose or xylose. After optimal growth was obtained, both RTILs and enzymatic treatments were used to break the cell wall, in order to extract the PHAs, and peptidoglycan. PHAs and peptidoglycan were successfully extracted from the cell, and will be used in the future to create a new stronger co-polymer. Peptidoglycan recovery yield was 16% of the cells’ dry weight.
Resumo:
Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher than during the pre-industrial era. Accumulating evidence indicates that both elevated CO2 and elevated O3 could modify the quantity and biochemistry of woody plant biomass. Anatomical properties of woody plants are largely influenced by the activity of the cambium and the growth characteristics of wood cells, which are in turn influenced by a range of environmental factors. Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood anatomical properties. Many fungi derive their metabolic resources for growth from plant litter, including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical properties of woody plants in response to elevated CO2 and / or O3 could impact the community of wood-decaying fungi and rates of wood decomposition. Consequently carbon and nutrient cycling and productivity of terrestrial ecosystem could also be impacted. Alterations in wood structure and biochemistry of woody plants could also impact wood density and subsequently impact wood quality. This dissertation examined the long term effects of elevated CO2 and / or O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project, near Rhinelander, WI, USA. Anatomical properties of wood varied significantly with species and aspen genotypes and radial position within the stem. Elevated CO2 did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects were species and / or genotype specific. However, the effects of elevated CO2 and O3, alone, on wood anatomical properties and density were ameliorated when in combination. Wood species had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated. Based on the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality of northern hardwoods, but for utilization purposes these may not be considered significant. However, wood-decaying fungal community composition and decomposition of northern hardwoods may be altered via shifts in species and / or genotype composition under future higher levels of CO2 and O3.
Resumo:
A comprehensive knowledge of cell wallstructure and function throughout the plant kingdom is essential to understanding cell wall evolution. The fundamental understanding of the charophycean green algal cell wall is broadening. The similarities and differences that exist between land plant and algal cell walls provide opportunities to understand plant evolution. A variety of polymers previously associated with higher plants were discovered in the charophycean green algae (CGA), including homogalacturonans, cross-linking glycans, arabinogalactan protein, β-glucans, and cellulose. The cellulose content of CGA cell walls ranged from 6% to 43%, with the higher valuescomparable to that found in the primary cell wall of land plants (20-30%). (1,3)β-glucans were found in the unicellular Chlorokybus atmophyticus, Penium margaritaceum, and Cosmarium turpini, the unbranched filamentous Klebsormidium flaccidum, and the multicellular Chara corallina. The discovery of homogalacturonan in Penium margaritaceum representsthe first confirmation of land plant-type pectinsin desmids and the second rigorous characterization of a pectin polymer from the charophycean algae. Homogalacturonan was also indicated from the basal species Chlorokybus atmophyticus and Klebsormidium flaccidum. There is evidence of branched pectins in Cosmarium turpini and linkage analysis suggests the presence of type I rhamnogalacturonan (RGI). Cross-linking β-glucans are associated with cellulose microfibrils during land plant cell growth, and were found in the cell wall of CGA. The evidence of mixed-linkage glucan (MLG) in the 11 charophytesis both suprising and significant given that MLG was once thought to be specific to some grasses. The organization and structure of Cosmarium turpini and Chara corallina MLG was found to be similar to that of Equisetumspp., whereas the basal species of the CGA, Chlorokybus atmophyticus and Klebsormidium flaccidum, have unique organization of alternating of 3- and 4-linkages. The significance of this result on the evolution of the MLG synthetic pathway has yet to be determined. The extracellular matrix (ECM) of Chlorokybus atmophyticus, Klebsormidium flaccidum, and Spirogyra spp. exhibits significant biochemical diversity, ranging from distinct “land plant” polymers to polysaccharides unique to these algae. The neutral sugar composition of Chlorokybus atmophyticus hot water extract and Spirogyra extracellular polymeric substance (EPS), combined with antibody labeling results, revealed the distinct possibility of an arabinogalactan protein in these organisms. Polysaccharide analysis of Zygnematales (desmid) EPS, indicated a probable range of different EPS backbones and substitution patterns upon the core portions of the molecules. Desmid EPS is predominately composed of a complex matrix of branched, uronic acid containing polysaccharides with ester sulfate substitutions and, as such, has an almost infinite capacity for various hydrogen bonding, hydrophobic interaction and ionic cross-bridging motifs, which characterize their unique function in biofilms. My observations support the hypothesis that members of the CGA represent the phylogenetic line that gave rise to vascular plants and that the primary cell wall of vascular plants many have evolved directly from structures typical of the cell wall of filamentous green algae found in the charophycean green algae.
Resumo:
The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery “wastes”: lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization ( Peptidoglycan (a bacterial cell wall material) was copolymerized with poly-(3-hydroxybutyrate), a common polyhydroxyalkanoate produced by bacteria with the objective of determining if a useful material could be obtained with a less rigorous work-up on harvesting polyhydroxyalkanoates. The copolyesteramide product having 25 wt.% peptidoglycan from a highly purified peptidoglycan increased thermal stability by 100-200 °C compared to the poly-(3-hydroxybutyrate) control, while a less pure peptidoglycan, harvested from B. megaterium (ATCC 11561), gave a 25-50 °C increase in thermal stability. Both copolymers absorbed more moisture than pure poly-(3-hydroxybutyrate). The results suggest that a less rigorously harvested and purified polyhydroxyalkanoate might be useful for some applications.