967 resultados para catch-trays
Resumo:
Cod, haddock, whiting, saithe, plaice, sole and Norway lobster are 7 main target species of the demersal mixed fisheries in the North Sea, Skagerrak and Eastern Channel. Gadoids and Norway lobsters are mainly taken in the nor-thern North Sea by towed gears except beam trawls while the flatfish fisheries are conducted in the southern North Sea mainly using beam trawls. Recently, the central North Sea appears less fished by demersal gears. Towed nets including seines and beam trawls equipped with meshes of more than 100 mm resp. more than 80 mm were identified as the main gears effecting the depleted cod and reduced plaice stocks. The saithe sector, using towed nets with meshes of more than110 mm, longlines, gill nets and others, appears to affect the 7 species to a lesser extend. These results support the interim effort limitations by gear types, vessel and month as enforced by the European Commission since 2003. TAC regulations alone are considered inefficient to sustainably harvest stocks by mixed fisheries. A fleet-effort management method is developed estimating the fleets’ effects based on the sum of partial exploitation rates of the species in mixed fisheries weighted by the ratio of the precautionary reference Bpa and the actual SSB size as ecological quality objective. Applying such fleet effort management could result in increased catch possibilities of some stocks by fleets selecting mainly few and non-overexploited stocks while respecting precautionary management constraints in minimum SSB or maximum exploitation rates at the same time.
Resumo:
“Wrong trawl, wrong rigging – that’s why research ship cannot find cod” – in a polemic article in the April number of “Fishing News International” British fishermen accuse fishery scientists of using the wrong trawl for their bottom trawl surveys in the North Sea. They wrote the GOV is unsuited to catch cod and therefore the cod stock could be in a much better shape than assessed by the scientists. In this paper the characteristics of a scientific survey trawl and the results of comparison fishing experiments are listed.
Resumo:
Since some time fishing gear scientists express their concern over an observed tendency of the commercial fishery to proceed from codend netting yarns of 3 to 4 mm to higher values or to switch to the use of double instead of single yarn. A recent large EU-financed project collected statistical evidence on the detrimental effect of such behaviour on the selectivity of the codends. In this context data on cod are very scarce. German-Polish experiments in the Baltic from 1999 to 2001 aimed at filling this gap. The investigations prove a clear evidence of a negativ ecorrelation between netting yarn diameter and selectivity factor and/or L50. In addition they demonstrate a clear negative effect on selectivity when switching from single to double yarn The effects are of an order of magnitude that counteracting effects as catch size are masked and support the decision of the IBSFC to define maximum yarn diameters both for single and double yarn netting. A measuring instrument for the enforcement of these new regulations was introduced right in time.
Resumo:
Two years after their last meeting, scientists from North Sea neighbouring countries working on aspects of brown shrimp biology and fisheries gathered in Oostende, Belgium, to exchange information and results of their research. The group was established ten years ago by the International Council of the Exploration of the Sea (ICES)during the Warnemünde Annual Science Conference. Data on brown shrimp landings, fishing effort and resulting landings per unit effort were compiled. For the first time a computer model was demonstrated simulating the life cycle of C. crangon on basis of experimental and field data available. It will provide a means for testing different possible scenarios and their effect on the brown shrimp stocks. Catch predictions are not possible by this, as no stock assessments can yet be achieved for brown shrimp, and a number of topics have to be addressed by further research programmes. However, an approach of estimating the level of landings on basis of preceding climatological and hydrographical data seemed promising. Furthermore selectivity experiments and electric gear types were reported giving reason to assume, that progress is possible in the further reduction of bycatches. The assembling of already existing data in various countries and their evaluation was recommended besides the pursuing of the mentioned fields of research and proper reporting of EU log book data by all countries.
Resumo:
To improve the cod stocks in the Baltic Sea, a number of regulations have recently been established by the International Baltic Sea Fisheries Commission (IBSFC) and the European Commission. According to these, fishermen are obliged to use nets with escape windows (BACOMA nets) with a mesh size of the escape window of 120 mm until end of September 2003. These nets however, retain only fish much larger than the legal minimum landing size would al-low. Due to the present stock structure only few of such large fish are however existent. As a consequence fishermen use a legal alternative net. This is a conventional trawl with a cod-end of 130 mm diamond-shaped meshes (IBSFC-rules of 1st April 2002), to be increased to 140 mm on 1st September 2003, according to the mentioned IBSFC-rule. Due legal alterations of the net by the fishermen (e.g. use of extra stiff net material) these nets have acquired extremely low selective properties, i. e. they catch very small fish and produce great amounts of discards. Due to the increase of the minimum landing size from 35 to 38 cm for cod in the Baltic, the amount of discards has even increased since the beginning of 2003. Experiments have now been carried out with the BACOMAnet on German and Swedish commercial and research vessels since arguments were brought forward that the BACOMA net was not yet sufficiently tested on commercial vessels. The results of all experiments conducted so far, are compiled and evaluated here. As a result of the Swedish, Danish and German initiative and research the European Commission reacted upon this in June 2003 and rejected the increase of the diamond-meshed non-BACOMA net from 130 mm to 140mm in September 2003. To protect the cod stocks in the Baltic Sea more effectively the use of traditional diamond meshed cod-ends with-out escape window are prohibited in community waters without derogation, becoming effective 1st of September 2003. To enable more effective and simplified control of the bottom trawl fishery in the Baltic Sea the principle of a ”One-Net-Rule“ is enforced. This is going to be the BACOMA net, with the meshes of the escape window being 110 mm for the time being. The description of the BACOMA net as given in the IBSFC-rules no.10 (revision of the 28th session, Berlin 2002) concentrates on the cod-end and the escape window but only to a less extent on the design and mesh-composition of the remaining parts of the net, such as belly and funnel and many details. Thus, the present description is not complete and leaves, according to fishermen, ample opportunity for manipulation. An initiative has been started in Germany with joint effort from scientists and the fishery to better describe the entire net and to produce a proposal for a more comprehensive description, leaving less space for manipulation. A proposal in this direction is given here and shall be seen as a starting point for a discussion and development towards an internationally uniform net, which is agreed amongst the fishery, scientists and politicians. The Baltic Sea fishery is invited to comment on this proposal, and recommendations for further improvement and specifications are welcomed. Once the design is agreed by the Baltic Fishermen Association, it shall be proposed to the IBSFC and European Commission via the Baltic Fishermen Association.
Resumo:
During the autumn session of the ICES Advisory Committee for Fisheries Management (ACFM) 58 stocks assessed in 7 Working Groups have been analyzed and reviewed, among these the demersal stocks in the North Sea and the Mackerel stock. As in previous years, ICES recommends a reduction in fishing mortality for a number of stocks or even the establishment of recovery and management plans, to safeguard a continuous development of the stocks towards safe biological limits. ICES reiterated last year’s recommendation to close the directed cod fishery and any fishery taking cod as by-catch in the North Sea, west of Scotland and in the Irish Sea. This year, the stocks of plaice in the North Sea, southern hake and southern anglers are (among others) in a critical state and in urgent need of protecting or rebuilding measures. This will again have an enormous impact on almost all mixed fisheries in the European Union.
Resumo:
Six countries around the North Sea have contributed to an EU-funded project collecting information about the catch composition in commercial fisheries. The aim was, by including that part of the catch, which is discarded after sorting, to gain better knowledge about the real stock size of the most important fish species. Additionally, the data shall contribute to a better understanding of the ecological effects of trawling.
Resumo:
Though economic research is not one of the tasks of the German Federal Research Centre for Fisheries, basic in-formation for such work is available from biologic studies on fish biomass, discards and seasonal abundance of species. Results from EU-studies on brown shrimp fisheries show the effect of discarding juvenile fish, especially plaice, the possibly lost numbers and value of this fish as well as chances of reducing these losses by a timely effort reduction in summer and the use of selective nets throughout most parts of the year. However, it is also made clear, that these costly measures may have no effect on the stocks due to biological compensatory effects observed in strong year classes of plaice e. g. 1996, with high landings and collapsing prices. Therefore sound biological and economic data and methods are needed to assess the economic effects of management measures on fishermen’s situation and markets. Compensations for catch limitations may become inevitable.
Resumo:
During the autumn session of the ICES Advisory Committee for Fisheries Management (ACFM) 58 stocks assessed in six Working Groups have been analysed and reviewed, among these the demersal stocks in the North Sea and the Mackerel stock in the North East Atlantic. As in previous years, ICES recommends a reduction in fishing mortality for a number of stocks or even the establishment of recovery and management plans, to safeguard a continuous development of the stocks towards safe biological limits. ICES recommended the closure of the directed cod fishery and any fishery taking cod as by-catch in the North Sea, west of Scotland and in the Irish Sea. This will have a significant impact on the mixed round fish fisheries targeting haddock and whiting.
Resumo:
Although the fishery on flounder in the German fishery zone in 2002 was characterised by good catch possibilities, a dramatic decrease of landings was observed because of marketing problems and low prices. Due to increasing international fishery pressure on flounder a quota system should be established in the future. The German flounder landings could be increased by a better marketing strategy to meet the optimal requirements for a reliable German quota. For 2003 the stock condition is expected to be good which could ensure a successful flounder fishery. It is necessary to stabilize the present technical measures for a better selection of the codend in the medium term.
Resumo:
ENGLISH: Totals of 59,547 tagged yellowfin and 90,412 tagged skipjack were released during 1952-1964 throughout the range of the fishery in the eastern Pacific Ocean during that period. Most of the fish were released from commercial baitboats, either on regular fishing trips or on chartered trips to catch fish for tagging. There we re 8,397 yellowfin and 4,381 skipjack returned from these releases. There appear to be two main groups of yellowfin in the eastern Pacific Ocean. There is considerable intermingling among the fish of the two groups, however. The fish of the northern group (west coast of Baja California, Gulf of California, and Revillagigedo Islands) first appear in the Revillagigedo Islands in about April, and migrate north along the Baja California coast during the spring and summer and south along that coast during the fall. Recruits to the southern group (Tres Marias Islands to northern Chile) appear at many points or continuously along most of the coast. The fish which first appear in the northern Panama Bight in April migrate rapidly northwest to Central America and Mexico and south to the Gulf of Guayaquil. There also appear to be two main groups of skipjack in the eastern Pacific Ocean. The fish of the northern group (west coast of Baja California, Gulf of California, and Revillagigedo Islands ) perform about the same migration as do the yellowfin of the same area, but most of the skipjack apparently then migrate to the central Pacific Ocean during the fall and/or winter. Recruits to the southern group (Central America to northern Chile) appear mostly in or near the Panama Bight. The fish which first appear in the northern Panama Bight in April migrate rapidly northwest to Central America and south to the Gulf of Guayaquil. The proportions which migrate in these directions vary considerably from year to year, this perhaps being dependent on differences in the sea-surface temperatures. SPANISH: Durante el período de 1952-1964 se liberó a través de todos los límites de distribución de la pesquería en el Océano Pacífico oriental un total de 59,547 aleta amarilla y 90,412 barriletes marcados. La mayoria de los peces fueron liberados de barcos de carnada comerciales, o en viajes regulares de pesca o en viajes en los que se fletaron los barcos para capturar atunes y marcarlos. De estas líberaciones se recapturaron 8,397 aleta amarilla y 4,381 barriletes. Parece que haya dos grupos principales de aleta amarilla en el Océano Pacífico oriental. Sin embargo, existe una entremezcla considerable entre los peces de los dos grupos. Los peces del grupo septentrional (costa occidental de Baja California, Golfo de California y Islas Revillagigedo) aparecen primero en las Islas Revillagigedo alrededor de abril, y durante la primavera y el verano se desplazan al norte a lo largo de la costa de Baja California y durante el otoño al sur a lo largo de la costa. Los reclutas del grupo meridional (Islas Tres Marias hasta el norte de Chile) aparecen en muchas partes o continuamente a lo largo de la mayoría de la costa. Los peces que aparecen primero en la región septentrional del Panamá Bight en abril se desplazan rápidamente al noroeste a la América Central y México y al sur al Golfo de Guayaquil. Parece también que existen dos grupos principales de barrilete en el Océano Pacífico oriental. Los peces del gr upo septentrional (costa occidental de Baja California, Golfo de California e Islas Revillagigedo ) realizan casi la misma migración que el atún aleta amarilla de la misma área, pero aparentemente la mayor parte del barrilete se desplaza luego al Océano Pacífico central durante el otoño y/o en el invierno. Los reclutas al grupo meridional (América Central al norte de Chile) aparecen en su mayoría en el Panamá Bight o cerca a este lugar. Los peces que aparecen primero en la región septentrional del Panamá Bight en abril se desplazan rápidamente al noroeste a la América Central y al sur al Golfo de Guayaquil. Las proporciones que se desplazan en estas direcciones varían considerablemente de año a año; tal vez esto depende en las diferencias de temperatura de la superficie del mar. (PDF contains 227 pages.)
Resumo:
ENGLISH: This report deals with the Japanese longline fishery for tunas and billfishes from 1967 through 1970, extending the studies made by Kume and Joseph (1969a, 1969b). The distribution of effort and catch is discussed and evaluated, and the changes in apparent abundance are examined. An analysis is made of the sexual maturity and size composition of the fish, and a brief comparison of the size composition of the catches from the longline and the surface fisheries is included. SPANISH: Este informe analiza la pesca palangrera japonesa de atunes y peces espada desde 1967 a 1970, ampliando los estudios hechos por Kume y Joseph (1969a, 1969b). Se discute y avalúa la distribución del esfuerzo y la captura, y los cambios en la abundancia aparente. Se hace un análisis de la madurez sexual y de la composición de talla de los peces y una breve comparación entre la composición de talla de los peces capturados en la pesca palangrera y la epípelágíca. (PDF contains 166 pages.)
Resumo:
ENGLISH: The fishing power of the tuna purse-seine fleet of the eastern Pacific Ocean has increased since the early 1960's. Because the entire fleet seems to have adopted equipment and techniques to increase its efficiency in capturing tunas, traditional methods of adjusting catch rates to a reference vessel type of fixed efficiency to index tuna abundance from fishing success are inapplicable. Instead, a methodology for such adjustment based on a mathematical representation of purse seining activities is developed. Observed changes in efficiency in subprocesses of purse seining are then used to adjust catch rates when computing abundance histories for yellowfin and skipjack in large regions of the eastern Pacific Ocean. SPANISH: La eficacia de pesca de la flota de cerco atunera en el Océano Pacífico oriental ha aumentado desde el comienzo del decenio de 1960. Como toda la flota parece haber adoptado equipo y métodos para incrementar su eficaciaen capturar atunes, no se pueden aplicar los métodos tradicionales de ajustar los índices de captura a un tipo normalizado de barco (es decir de eficacia fija) para indicar la abundancia del atún según los resultados de pesca. En su lugar se ha desarrollado un método para realizar tal ajuste basado en una representación matemática de las actividades de las embarcaciones de cerco. Cuando se calcula la abundancia histórica del atún aleta amarilla y barrilete en grandes regiones del Océano Pacífico oriental, se usan entonces los cambios observados en la eficacia de los subprocesos cerqueros para ajustar los índices de captura. (PDF contains 120 pages.)
Resumo:
In order to restore the balance between available fish res-sources and catch capacities in the marine waters of the EU, the European Commission has introduced so-called Multiannual Guidance Programmes (MAGPs) within the frame work of the Common Fisheries Policy (CFP). However, the non-quantified relation between fishing effort and fishing power of a vessel has proved to be one of the most difficult problems. The present contribution suggests to substitute traditional but non-quantifying methods by including the real catch results into the models.
Resumo:
The reduction of discards will only be achieved, if more effective methods of catch selection will be developed and used. In principle, the unavoidable by catch of commercial fish should be used for human consumption, independent of the requirements for minimum length and existing catch quotas. The amount of such bycatch should be charged to the total catch quota and preferably be used for processing of fish portions with skin (carcasses with skin), because this kind of processing results in higher yields and nutrional advantages compared to fillet processing. Unfortunately, nowadays, in the German fishery and fish trade this traditional form of supply is only of minor importance because of the predominance of fillets and fillet products. However, cooperation between fishing industry and fish trade and a good advertising of processed fish portions with skin could overcome this problem. In the pelagic fishery of herring, mackerel and other similar pelagic species the bycatch of small sized specimen of these species can be a problem. These small sized fish can principally be processed to traditional fish products, but the processing costs for them are much higher. The prospects for processing of the bycatch into minced fish meat, fish protein concentrate or fish protein hydrolysate are very poor under the existing regime in the German fishing industry. A further way for processing of the bycatch, which can not be used for human consumption, is the production of fishmeal. However, only three German factory ships dispose of fish meal plants. Under the current economic conditions, i.e. because of limited storage capacity, the Ger-man trawler and cutter fleet is not able to transport the bycatch for fish meal production ashore.