913 resultados para caspase recruitment domain protein 15 gene
Resumo:
The alpha 1B-adrenergic receptor (alpha 1B-ADR) is a member of the G-protein-coupled family of transmembrane receptors. When transfected into Rat-1 and NIH 3T3 fibroblasts, this receptor induces focus formation in an agonist-dependent manner. Focus-derived, transformed fibroblasts exhibit high levels of functional alpha 1B-ADR expression, demonstrate a catecholamine-induced enhancement in the rate of cellular proliferation, and are tumorigenic when injected into nude mice. Induction of neoplastic transformation by the alpha 1B-ADR, therefore, identifies this normal cellular gene as a protooncogene. Mutational alteration of this receptor can lead to activation of this protooncogene, resulting in an enhanced ability of agonist to induce focus formation with a decreased latency and quantitative increase in transformed foci. In contrast to cells expressing the wild-type alpha 1B-ADR, focus formation in "oncomutant"-expressing cell lines appears constitutively activated with the generation of foci in unstimulated cells. Further, these cell lines exhibit near-maximal rates of proliferation even in the absence of catecholamine supplementation. They also demonstrate an enhanced ability for tumor generation in nude mice with a decreased period of latency compared with cells expressing the wild-type receptor. Thus, the alpha 1B-ADR gene can, when overexpressed and activated, function as an oncogene inducing neoplastic transformation. Mutational alteration of this receptor gene can result in the activation of this protooncogene, enhancing its oncogenic potential. These findings suggest that analogous spontaneously occurring mutations in this class of receptor proteins could play a key role in the induction or progression of neoplastic transformation and atherosclerosis.
Resumo:
We have isolated and sequenced a cDNA encoding the human beta 2-adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster beta 2-adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. We have localized the gene for the beta 2-adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor.
Resumo:
Many of the biochemical reactions of apoptotic cell death, including mitochondrial cytochrome c release and caspase activation, can be reconstituted in cell-free extracts derived from Xenopus eggs. In addition, because caspase activation does not occur until the egg extract has been incubated for several hours on the bench, upstream signaling processes occurring before full apoptosis are rendered accessible to biochemical manipulation. We reported previously that the adaptor protein Crk is required for apoptotic signaling in egg extracts (Evans, E.K., W. Lu, S.L. Strum, B.J. Mayer, and S. Kornbluth. 1997. EMBO (Eur. Mol. Biol. Organ.) J. 16:230-241). Moreover, we demonstrated that removal of Crk Src homology (SH)2 or SH3 interactors from the extracts prevented apoptosis. We now report the finding that the relevant Crk SH2-interacting protein, important for apoptotic signaling in the extract, is the well-known cell cycle regulator, Wee1. We have demonstrated a specific interaction between tyrosine-phosphorylated Wee1 and the Crk SH2 domain and have shown that recombinant Wee1 can restore apoptosis to an extract depleted of SH2 interactors. Moreover, exogenous Wee1 accelerated apoptosis in egg extracts, and this acceleration was largely dependent on the presence of endogenous Crk protein. As other Cdk inhibitors, such as roscovitine and Myt1, did not act like Wee1 to accelerate apoptosis, we propose that Wee1-Crk complexes signal in a novel apoptotic pathway, which may be unrelated to Wee1's role as a cell cycle regulator.
Resumo:
A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 10(13) vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4(+) (but not CD8(+)) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.
Resumo:
The attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.
Resumo:
UNLABELLED: In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE: Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.
Resumo:
The protein kinase A (PKA) signal transduction pathway has been associated with pathogenesis in many fungal species. Geddes and colleagues [mBio 7(1):e01862-15, 2016, doi:10.1128/mBio.01862-15] used quantitative proteomics approaches to define proteins with altered abundance during protein kinase A (PKA) activation and repression in the opportunistic human fungal pathogen Cryptococcus neoformans. They observed an association between microbial PKA signaling and ubiquitin-proteasome regulation of protein homeostasis. Additionally, they correlated these processes with expression of polysaccharide capsule on the fungal cell surface, the main virulence-associated phenotype in this organism. Not only are their findings important for microbial pathogenesis, but they also support similar associations between human PKA signaling and ubiquitinated protein accumulation in neurodegenerative diseases.
Resumo:
Developmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of β-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate.
Resumo:
The final step of the transduction pathway is the activation of gene transcription, which is driven by kinase cascades leading to changes in the activity of many transcription factors. Among these latter, PEA3/E1AF, ER81/ETV1, and ERM, members of the well conserved PEA3 group from the Ets family are involved in these processes. We show here that protein kinase A (PKA) increases the transcriptional activity of human ERM and human ETV1, through a Ser residue situated at the edge of the ETS DNA-binding domain. PKA phosphorylation does not directly affect the ERM transactivation domains but does affect DNA binding activity. Unphosphorylated wild-type ERM bound DNA avidly, whereas after PKA phosphorylation it did so very weakly. Interestingly, S367A mutation significantly reduced the ERM-mediated transcription in the presence of the kinase, and the DNA binding of this mutant, although similar to that of unphosphorylated wild-type protein, was insensitive to PKA treatment. Mutations, which may mimic a phosphorylated serine, converted ERM from an efficient DNA-binding protein to a poor DNA binding one, with inefficiency of PKA phosphorylation. The present data clearly demonstrate a close correlation between the capacity of PKA to increase the transactivation of ERM and the drastic down-regulation of the binding of the ETS domain to the targeted DNA. What we thus demonstrate here is a relatively rare transcription activation mechanism through a decrease in DNA binding, probably by the shift of a non-active form of an Ets protein to a PKA-phosphorylated active one, which should be in a conformation permitting a transactivation domain to be active.
Resumo:
Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.
Resumo:
Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.
Resumo:
The E1AF protein belongs to the family of Ets transcription factors and is involved in the regulation of metastasis gene expression. It has recently been reported in an undifferentiated child sarcoma that part of this gene could be fused by translocation to the ews gene. We show here that the human e1af gene, which is located in the q21 region of chromosome 17, is organized in 13 exons distributed along 19 kb of genomic DNA. Its two main functional domains, the acidic domain and the DNA-binding ETS domain, are each encoded by three different exons. The 3'-untranslated region of e1af is 0.7 kb. The 5'-untranslated region is about 0.3 kb and is composed of a first exon upstream from the exon containing the first methionine. These data could possibly accelerate an understanding of the molecular basis of putative inherited diseases linked to E1AF. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.