965 resultados para carboxyl-terminus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

KCNQ1 (Kv7.1), together with its KCNE β subunits, plays a pivotal role both in the repolarization of cardiac tissue and in water and salt transport across epithelial membranes. Nedd4/Nedd4-like (neuronal precursor cell-expressed developmentally downregulated 4) ubiquitin-protein ligases interact with the KCNQ1 potassium channel through a PY motif located in the C terminus of KCNQ1. This interaction induces ubiquitylation of KCNQ1, resulting in a reduced surface density of the channel. It was reported recently that the epithelial sodium channel is regulated by the reverse process-deubiquitylation-mediated by USP2 (ubiquitin-specific protease 2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N-terminal Fic domain and a C-terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS-mediated translocation into host cells. A proteolysis resistant fragment (residues 10-302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α-[(32)P]-ATP. Its crystal structure, determined to 2.9-Å resolution by the SeMet-SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β-rich domain at the C-terminus. On crystal soaking with ATP/Mg(2+), additional electron density indicated the presence of a PP(i) /Mg(2+) moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg(2+) and target tyrosine. The model is consistent with an in-line nucleophilic attack of the deprotonated side-chain hydroxyl group onto the α-phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence-independent mechanism of target positioning through antiparallel β-strand interactions between enzyme and target is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding affinity and pharmacokinetics. This enabled development of a novel (64/67)Cu-labeled BN peptide for PET imaging and targeted radiotherapy of BN receptor-positive tumors. Our results show that N-terminally positively charged peptide ligands had significantly higher affinity to human gastrin releasing peptide receptor (GRPr) than negatively charged or uncharged ligands (IC(50): 3.2±0.5 vs 26.3±3.5 vs 41.5±2.5 nM). The replacement of Nle(14) by Met, and deletion of D-Tyr(6), further resulted in 8-fold higher affinity. Contrary to significant changes to human GRPr binding, modifications at the N-terminal and at the 6(th), 11(th), and 14(th) position of BN induced only slight influences on affinity to mouse GRPr. [Cu(II)]-CPTA-[βAla(11)] BN(7-14) ([Cu(II)]-BZH7) showed the highest internalization rate into PC-3 cells with relatively slow efflux because of its subnanomolar affinity to GRPr. Interestingly, [(64/67)Cu]-BZH7 also displayed similar affinities to the other 2 human BN receptor subtypes. In vivo studies showed that [(64/67)Cu]-BZH7 had a high accumulation in PC-3 xenografts and allowed for clear-cut visualization of the tumor in PET imaging. In addition, a CPTA-glycine derivative, forming a hippurane-type spacer, enhanced kidney clearance of the radiotracer. These data indicate that the species variation of BN receptor plays an important role in screening radiolabeled BN. As well, the positive charge from the metallated complex at the N-terminal significantly increases affinity to human GRPr. Application of these observations enabled the novel ligand [(64/67)Cu]-BZH7 to clearly visualize PC-3 tumors in vivo. This study provides a strong starting point for optimizing radiopeptides for targeting carcinomas that express any of the BN receptor subtypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Click chemistry is a powerful technology for the functionalization of therapeutic proteins with effector moieties, because of its potential for bio-orthogonal, regio-selective, and high-yielding conjugation under mild conditions. Designed Ankyrin Repeat Proteins (DARPins), a novel class of highly stable binding proteins, are particularly well suited for the introduction of clickable methionine surrogates such as azidohomoalanine (Aha) or homopropargylglycine (Hpg), since the DARPin scaffold can be made methionine-free by an M34L mutation in the N-cap which fully maintains the biophysical properties of the protein. A single N-terminal azidohomoalanine, replacing the initiator Met, is incorporated in high yield, and allows preparation of "clickable" DARPins at about 30 mg per liter E. coli culture, fully retaining stability, specificity, and affinity. For a second modification, we introduced a cysteine at the C-terminus. Such DARPins could be conveniently site-specifically linked to two moieties, polyethylene glycol (PEG) to the N-terminus and the fluorophore Alexa488 to the C-terminus. We present a DARPin selected against the epithelial cell adhesion molecule (EpCAM) with excellent properties for tumor targeting as an example. We used these doubly modified molecules to measure binding kinetics on tumor cells and found that PEGylation has no effect on dissociation rate, but slightly decreases the association rate and the maximal number of cell-bound DARPins, fully consistent with our previous model of PEG action obtained in vitro. Our data demonstrate the benefit of click chemistry for site-specific modification of binding proteins like DARPins to conveniently add several functional moieties simultaneously for various biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filaggrin loss-of-function mutations resulting in C-terminal protein truncations are strong predisposing factors in human atopic dermatitis (AD). To assess the possibility of similar truncations in canine AD, an exclusion strategy was designed on 16 control and 18 AD dogs of various breeds. Comparative immunofluorescence microscopy was performed with an antibody raised against the canine filaggrin C-terminus and a commercial N-terminal antibody. Concurrent with human AD-like features such as generalized NFKB activation and hyperproliferation, four distinctive filaggrin expression patterns were identified in non-lesional skin. It was found that 10/18 AD dogs exhibited an identical pattern for both antibodies with comparable (category I, 3/18) or reduced (category II, 7/18) expression to that of controls. In contrast, 4/18 dogs displayed aberrant large vesicles revealed by the C-terminal but not the N-terminal antibody (category III), while 4/18 showed a control-like N-terminal expression but lacked the C-terminal protein (category IV). The missing C-terminal filaggrin in category IV strongly points towards loss-of function mutations in 4/18 (22%) of all AD dogs analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i) human monocyte derived macrophages (MDM) monocultures, and (ii) a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf) or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2) and carboxyl (−COOH) surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α). In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8) was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary surfactant should be considered for future lung in vitro risk assessment studies. Keywords: Multi-walled carbon nanotubes (MWCNTs); Pulmonary surfactant (Curosurf); Macrophages; Epithelial cells; Dendritic cells; Triple cell co-culture; Pro-inflammatory and oxidative reactions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soybean lipoxygenase-1 is a model for lipoxygenase activity. While the mechanism of oxygenation is understood, the substrate binding mechanism has not yet been elucidated. Two putative binding mechanisms are the ¿head-first¿ and ¿tail-first¿ models, in which the carboxy-terminus or the methyl terminus of the fatty acid substrate is inserted into the active site while the remainder of the molecule protrudes from the surface, respectively. Previous work has demonstrated that derivatization of fatty acid substrates with D-tryptophan increases active site affinity. It has also been shown that while polyunsaturated fatty acids are the natural substrates of lipoxygenases, monounsaturated fatty acids can be oxygenated at a much slower rate. Starting with a monounsaturated fatty acid, oleic acid, as a platform, the molecule N-oleoyl-D-tryptophan (ODT) was synthesized with the anticipation of it being a potent competitive substrate-analogue inhibitor that could be used to discern the substrate binding mechanism. Inhibition kinetics demonstrated that this molecule functions as a partially competitive inhibitor, through an unknown mechanism. The implication behind partially competitive inhibition is that substrate and inhibitor molecules can bind simultaneously to the enzyme, which alludes to the presence of an allosteric binding domain. To investigate the possibility of an inhibitor binding site on the non-catalytic subunit, limited proteolysis was used to cleave the subunits apart which should have eliminated inhibition. Interestingly, it was observed that at high substrate concentrations the inhibitor was completely ineffective, but at low substrate concentrations the inhibitor maintained its standard efficacy. A satisfactory explanation for these results has not yet been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipoxygenases are nonheme-iron proteins that catalyze the oxygenation of polyunsaturated fatty acids to give conjugated diene hydroperoxides. For example, soybean lipoxygenase-1 (SBLO-1) converts linoleate into 13-(S)-hydroperoxy-9(Z),11(E)-octadecadienoate (13(S)-HPOD). Although the crystal structure of SBLO-1 has been determined, it is still unclear how the substrate binds at the active site. This absence of knowledge makes it difficult to understand the role of the enzyme during catalysis of the reaction. We hypothesize that SBLO-1 binds linoleate ¿tail-first¿, so that the methyl terminus is within a hydrophobic pocket deep within the enzyme. It is believed that the hydrophobic residue phenylalanine-557 at this site has stabilizing interactions with the terminal methyl group on linoleate. To test this hypothesis, we have developed a synthetic pathway that will yield linoleate analogs with longer fatty acid chains by 1 and 2 more carbons at the alkyl terminus. These substrates will be analyzed through kinetic assays done in combination with wild type SBLO-1 and mutants in which we have replaced phenylalanine-557 with valine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipoxygenases are a class of enzymes which consist of non-heme iron dioxygenases that are produced by fungi, plants, and mammals and catalyze the oxygenation of polyunsaturated fatty acid substrates to unsaturated fatty acid hydroperoxide products. The unsaturated fatty acid hydroperoxide products are stereo- and regiospecific. One such lipoxygenase, soybean lipoxygenase-1 (SBLO-1), catalyzes the conversion of linoleate to 13-hydroperoxy-9(Z),11(E)-octadecadienoate (13-HPOD) and a small amount of 9-hydroperoxy-10(E),12(Z)-octadecadienoate (9-HPOD). Although the structure of SBLO-1 is known and it is the most widely studied lipoxygenase, how it binds to substrate is still poorly understood. Two competing binding hypotheses that have been used to understand and explain the binding are the head first binding model and the tail first binding model. The head first binding model predicts linoleate binds with its polar carboxylate group in the binding pocket and the methyl terminus at the surface of the binding pocket. The tail first binding model predicts that linoleate binds with its methyl terminus end in the binding pocket and the polar carboxylate group at the surface of the binding pocket. Both binding models have been used in the explanation of previous work. In previous work the replacement of phenylalanine with valine has been performed to produce the phe557val mutant SBLO-1. The mutant SBLO-1 was then used in the enzymatic oxygenation of linoleate. With this mutant, the amount of 9-HPOD that is formed increases. This result has been interpreted using the head-first binding model in which the smaller valine residue allows linoleate to bind with the polar carboxylate group of linoleate interacting with arginine-707. The work presented in this thesis confirms the regiochemical results of the previous work and further tests the head-first binding model. If head-first binding occurs, the 9-HPOD is expected to have primarily S configuration. Utilizing chiral-phase HPLC, it was found that the 9-HPOD produced by the phe557val mutant SBLO-1 is primarily S, consistent with head-first binding. The head-first binding model was also tested using linoleyl dimethylamine (LDMA), which has been shown to be a good substrate for SBLO-1 at pH 7.0, where LDMA is thought to be positively charged. This model predicts that less of the 9-peroxide should be produced with this substrate. Through the use of gas chromatography/mass spectrometry, it was found that the conversion of LDMA by the phe557val mutant SBLO-1 resulted in the formation of a 46:54 mixture of the 13-peroxide:9-peroxide. The higher amount of 9-peroxide is the opposite of what is expected for the currently proposed model suggesting that the proposed model may not be entirely correct. The results thus far have been consistent with reverse binding but not with the proposed interaction of the polar end of the substrate with arginine-707.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The annexins are a multigene family of Ca(2+)- and charged phospholipid-binding proteins. Although they have been ascribed with diverse functions, there is no consensus about the role played by this family as a whole. We have mapped the Ca(2+)-induced translocations of four members of the annexin family and of two truncated annexins in live cells, and demonstrated that these proteins interact with the plasma membrane as well as with internal membrane systems in a highly coordinated manner. Annexin 2 was the most Ca(2+) sensitive of the studied proteins, followed by annexins 6, 4 and 1. The calcium sensitivity of annexin 2 increased further following co-expression with S100A10. Upon elevation of [Ca(2+)](i), annexins 2 and 6 translocated to the plasma membrane, whereas annexins 4 and 1 also became associated with intracellular membranes and the nuclear envelope. The NH(2)-terminus had a modulatory effect on plasma membrane binding: its truncation increased the Ca(2+) sensitivity of annexin 1, and decreased that of annexin 2. Given the fact that several annexins are present within any one cell, it is likely that they form a sophisticated [Ca(2+)] sensing system, with a regulatory influence on other signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of anionic, carboxyl functionalized latex particles, recharged by a cationic surfactant acting as fabric softener/conditioner, to a cellulose surface was investigated with evanescent wave video microscopy. This technique allows to monitor the deposition and release of individual particles in real-time with an excellent selectivity and sensitivity. Since the recharged particles and the conditioner compete for the free surface, the initial deposition rate and final surface coverage are found to be strongly dependent on the ratio of particle and conditioner concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major goal in antibody design for cancer therapy is to tailor the pharmacokinetic properties of the molecule according to specific treatment requirements. Key parameters determining the pharmacokinetics of therapeutic antibodies are target specificity, affinity, stability, and size. Using the p185HER-2 (HER-2)-specific scFv 4D5 as model system, we analyzed how changes in molecular weight and valency independently affect antigen binding and tumor localization. By employing multimerization and PEGylation, four different antibody formats were generated and compared with the scFv 4D5. First, dimeric and tetrameric miniantibodies were constructed by fusion of self-associating, disulfide-linked peptides to the scFv 4D5. Second, we attached a 20-kDa PEG moiety to the monovalent scFv and to the divalent miniantibody at the respective C terminus. In all formats, serum stability and full binding reactivity of the scFv 4D5 were retained. Functional affinity, however, did change. An avidity increase was achieved by multimerization, whereas PEGylation resulted in a 5-fold decreased affinity. Nevertheless, the PEGylated monomer showed an 8.5-fold, and the PEGylated dimer even a 14.5-fold higher tumor accumulation than the corresponding scFv, 48 h post-injection, because of a significantly longer serum half-life. In comparison, the non-PEGylated bivalent and tetravalent miniantibodies showed only a moderate increase in tumor localization compared with the scFv, which correlated with the degree of multimerization. However, these non-PEGylated formats resulted in higher tumor-to-blood ratios. Both multimerization and PEGylation represent thus useful strategies to tailor the pharmacokinetic properties of therapeutic antibodies and their combined use can additively improve tumor targeting.