941 resultados para bubble train
Resumo:
Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Carajás railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.
Resumo:
This chapter, explores the role of the second tier of independent news blogs as it developed in the years following the Seattle WTO protests in 1999, and outlines the practice of gatewatching as a key element of news bloggers’ activities. We critique perceptions of the news blogosphere as an echo chamber or filter bubble whose discussions about current events are detached from journalistic coverage, and demonstrate instead the close interconnections between independent news bloggers and professional journalists in the wider media ecology. Finally, we sketch the gradual transition and broadening of gatewatching practices in the news blogosphere towards the collaborative curation of news sharing in contemporary social media spaces, and outline the further research questions which emerge from such transformations of the flows of news and discussion.
Resumo:
We propose a novel technique for conducting robust voice activity detection (VAD) in high-noise recordings. We use Gaussian mixture modeling (GMM) to train two generic models; speech and non-speech. We then score smaller segments of a given (unseen) recording against each of these GMMs to obtain two respective likelihood scores for each segment. These scores are used to compute a dissimilarity measure between pairs of segments and to carry out complete-linkage clustering of the segments into speech and non-speech clusters. We compare the accuracy of our method against state-of-the-art and standardised VAD techniques to demonstrate an absolute improvement of 15% in half-total error rate (HTER) over the best performing baseline system and across the QUT-NOISE-TIMIT database. We then apply our approach to the Audio-Visual Database of American English (AVDBAE) to demonstrate the performance of our algorithm in using visual, audio-visual or a proposed fusion of these features.
Resumo:
Insulated Rail Joints (IRJs) are safety critical component of the automatic block signalling and broken rail detection systems. IRJs exhibit several failure modes due to complex interaction between the railhead ends and the wheel tread near the gap. These localised zones could not be monitored using automatic sensing devices and hence are resorted to visual inspection only, which is error prone and expensive. In Australia alone currently there are 50,000 IRJs across 80,000 km of rail track. The significance of the problem around the world could thus be realised as there exists one IRJ for each 1.6 km track length. IRJs exhibit extremely low and variable service life; further the track substructure underneath IRJs degrade faster. Thus presence of the IRJs incur significant costs to track maintenance. IRJ failures have also contributed to some train derailments and various traffic disruptions in rail lines. This paper reports a systematic research carried out over seven years on the mechanical behaviour of IRJs for practically relevant outcomes. The research has scientifically established that stiffening the track bed for reduction in impact force is an ill-conceived concept and the most effective method is to reduce the gap size. Further it is established that hardening the railhead ends through laser coating (or other) cannot adequately address the metal flow problem in the long run; modification of the railhead profile is the only appropriate technique to completely eliminate the problem. Part of these outcomes has been adopted by the rail infrastructure owners in Australia.
Resumo:
Do you know how to drive a train? If you don’t you probably believe that you have a fair idea of what it’s all about. Forget what you know, or think you know. Trains are heavy and fast but they feel and handle like driving on ice so they take a long time to stop. The braking distances for a typical piece of track are unlike anything you will have experienced before. With that in mind, imagine you were driving with a bit of dew, or grease, or millipede over the track. You would lose traction and slip everywhere. To avoid this, you would need a compensatory driving strategy. You could drive more slowly, or brake sooner, or change how you brake. Your experience and intuition would lead the way. Folks, this is why it’s called “driving by the seat of your pants”...
Resumo:
The number of pedestrian victims at Australian and foreign level crossings has remained stable over the past decade and it continues to be a significant problem. To examine the factors contributing to pedestrians’ unsafe crossing behaviours, direct observations were conducted at three black spot urban level crossings in Brisbane for a total of 45 h during morning and afternoon peak. In total, 129 pedestrians transgressed the active controls. More transgressions were observed at the crossings located in more populated suburbs in close proximity to large shopping centres and school zones, whereas the smallest number of transgressions were observed at the least populated locations. In addition to characteristics associated with the larger socio-economic area, the patterns of transgression could be associated with the properties of the existing safety equipment and the design of each level crossing (i.e. location of the platforms, number of rail tracks). Indeed, the largest number of crossed unoccupied but “at risk” rail tracks (where a train could have passed), was observed at the crossing with the least transgressions. Contrary to previous findings, younger adults were the most frequent transgressors. School children and elderly were most likely to transgress in groups. Potential directions for future research and more effective measures are discussed.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided active level crossings with flashing lights; and passive level crossings controlled by stop and give way signs. The current strategy is to annually upgrade passive level crossings with active controls within a given budget, but the 5,900 public passive crossings are too numerous to be upgraded all. The rail industry is considering alternative options to treat more crossings. One of them is to use lower cost equipment with reduced safety integrity level, but with a design that would fail to a safe state: in case of the impossibility for the system to know whether a train is approaching, the crossing changes to a passive crossing. This is implemented by having a STOP sign coming in front of the flashing lights. While such design is considered safe in terms of engineering design, questions remain on human factors. In order to evaluate whether such approach is safe, we conducted a driving simulator study where participants were familiarized with the new active crossing, before changing the signage to a passive crossing. Our results show that drivers treated the new crossing as an active crossing after the novelty effect had passed. While most participants did not experience difficulties with the crossing being turned back to a passive crossing, a number of participants experienced difficulties stopping in time at the first encounter of such passive crossing. Worse, a number of drivers never realized the signage had changed, highlighting the link between the decision to brake and stop at an active crossing to the lights flashing. Such results show the potential human factor issues of changing an active crossing to a passive crossing in case of failure of the detection of the train.
Resumo:
Monitoring pedestrian and cyclists movement is an important area of research in transport, crowd safety, urban design and human behaviour assessment areas. Media Access Control (MAC) address data has been recently used as potential information for extracting features from people’s movement. MAC addresses are unique identifiers of WiFi and Bluetooth wireless technologies in smart electronics devices such as mobile phones, laptops and tablets. The unique number of each WiFi and Bluetooth MAC address can be captured and stored by MAC address scanners. MAC addresses data in fact allows for unannounced, non-participatory, and tracking of people. The use of MAC data for tracking people has been focused recently for applying in mass events, shopping centres, airports, train stations etc. In terms of travel time estimation, setting up a scanner with a big value of antenna’s gain is usually recommended for highways and main roads to track vehicle’s movements, whereas big gains can have some drawbacks in case of pedestrian and cyclists. Pedestrian and cyclists mainly move in built distinctions and city pathways where there is significant noises from other fixed WiFi and Bluetooth. Big antenna’s gains will cover wide areas that results in scanning more samples from pedestrians and cyclists’ MAC device. However, anomalies (such fixed devices) may be captured that increase the complexity and processing time of data analysis. On the other hand, small gain antennas will have lesser anomalies in the data but at the cost of lower overall sample size of pedestrian and cyclist’s data. This paper studies the effect of antenna characteristics on MAC address data in terms of travel-time estimation for pedestrians and cyclists. The results of the empirical case study compare the effects of small and big antenna gains in order to suggest optimal set up for increasing the accuracy of pedestrians and cyclists’ travel-time estimation.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided into one of two categories: active level crossings which are fully automatic and have boom barriers, alarm bells, flashing lights, and pedestrian gates; and passive level crossings, which are not automatic and aim to control road and pedestrianised walkways solely with stop and give way signs. Active level crossings are considered to be the gold standard for transport ergonomics when grade separation (i.e. constructing an over- or underpass) is not viable. In Australia, the current strategy is to annually upgrade passive level crossings with active controls but active crossings are also associated with traffic congestion, largely as a result of extended closure times. The percentage of time level crossings are closed to road vehicles during peak periods increases with the rise in the frequency of train services. The popular perception appears to be that once a level crossing is upgraded, one is free to wipe their hands and consider the job done. However, there may also be environments where active protection is not enough, but where the setting may not justify the capital costs of grade separation. Indeed, the associated congestion and traffic delay could compromise safety by contributing to the risk taking behaviour by motorists and pedestrians. In these environments it is important to understand what human factor issues are present and ask the question of whether a one size fits all solution is indeed the most ergonomically sound solution for today’s transport needs.
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
Rail joints are provided with a gap to account for thermal movement and to maintain electrical insulation for the control of signals and/or broken rail detection circuits. The gap in the rail joint is regarded as a source of significant problems for the rail industry since it leads to a very short rail service life compared with other track components due to the various, and difficult to predict, failure modes – thus increasing the risk for train operations. Many attempts to improve the life of rail joints have led to a large number of patents around the world; notable attempts include strengthening through larger-sized joint bars, an increased number of bolts and the use of high yield materials. Unfortunately, no design to date has shown the ability to prolong the life of the rail joints to values close to those for continuously welded rail (CWR). This paper reports the results of a fundamental study that has revealed that the wheel contact at the free edge of the railhead is a major problem since it generates a singularity in the contact pressure and railhead stresses. A design was therefore developed using an optimisation framework that prevents wheel contact at the railhead edge. Finite element modelling of the design has shown that the contact pressure and railhead stress singularities are eliminated, thus increasing the potential to work as effectively as a CWR that does not have a geometric gap. An experimental validation of the finite element results is presented through an innovative non-contact measurement of strains. Some practical issues related to grinding rails to the optimal design are also discussed.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
This paper reviews the innovations that have been introduced in the milling train at Rocky Point mill since 2001 and provides some operational, performance and maintenance comparisons of the technologies in use. The decision to install BHEM mills in the #2 and #3 mill positions to complement the six-roll mills in the #1 and #4 mill positions has proven a good one. Satisfactory performance is being obtained by these mills while maintenance costs are significantly less. Very good #1 mill extraction and final bagasse moisture content are being achieved. The innovation of using Hägglunds hydraulic drives at higher speed…
Resumo:
In this paper, we show implementation results of various algorithms that sort data encrypted with Fully Homomorphic Encryption scheme based on Integers. We analyze the complexities of sorting algorithms over encrypted data by considering Bubble Sort, Insertion Sort, Bitonic Sort and Odd-Even Merge sort. Our complexity analysis together with implementation results show that Odd-Even Merge Sort has better performance than the other sorting techniques. We observe that complexity of sorting in homomorphic domain will always have worst case complexity independent of the nature of input. In addition, we show that combining different sorting algorithms to sort encrypted data does not give any performance gain when compared to the application of sorting algorithms individually.
Resumo:
We studied the ways that urban commuter train passengers experience their journeys. We present the design process and in-situ evaluation of TrainYarn, a mobile app prototype designed to facilitate social interaction between co-located urban train passengers. Through the deployment of the prototype, we sought to probe perceptions of social space with a view to positively impact the assessment of public transport. Our results support that our target users saw value in the use of TrainYarn, perceiving it as emancipatory, in alignment with their communicative needs, and having the ability to transform their perceptions of social space. To further inform future research and practice, we put forward a series of design recommendations.