942 resultados para brain stimulation mapping
Resumo:
Previous studies have suggested that bipolar disorder (BD) is associated with alterations in neuronal plasticity, but the effects of the progression of illness on brain anatomy have been poorly investigated. We studied the correlation between length of illness, age, age at onset, and the number of previous episodes and total brain, total gray, and total white matter volumes in BD, unipolar (UP) and healthy control (HC) subjects. Thirty-six BD, 31 UP and 55 HCs underwent a 1.5 T brain magnetic resonance imaging scan, and gray and white matter volumes were manually traced blinded to the subjects` diagnosis. Partial correlation analysis showed that length of illness was inversely correlated with total gray matter volume after adjusting for total intracranial volume in BD (r(p)=-0.51; p=0.003) but not in UP subjects (r(p)=-0.23; p=0.21). Age at illness onset and the number of previous episodes were not significantly correlated with gray matter volumes in BD or UP subjects. No significant correlation with total white matter volume was observed. These results suggest that the progression of illness may be associated with abnormal cellular plasticity. Prospective longitudinal studies are necessary to elucidate the long-term effects of illness progression on brain structure in major mood disorders. (C) 2008 Published by Elsevier B.V.
Resumo:
Background: Obsessive-compulsive disorder (OCD) is a clinically heterogenous disorder characterized by temporally stable symptom dimensions. Past inconsistent results from structural neuroimaging studies of OCD may have resulted from the effects of these specific symptom dimensions as well as other socio-demographic and clinical variables upon gray matter (GM) volume. Methods: GM volume was measured in 25 adult OCD patients and 20 adult healthy controls using voxel-based morphometry (VBM), controlling for age and total brain GM volume. Univariate and multivariate regression analyses were carried out between regions of GM difference and age, age of onset, medication load, OCD severity, depression severity, and separate symptom dimension scores. Results: Significant GM volumetric differences in OCD patients relative to controls were found in dorsal cortical regions, including bilateral BA6, BA46, BA9 and right BA8 (controls > patients), and bilateral midbrain (patients > controls). Stepwise regression analyses revealed highly significant relationships between greater total OCD symptom severity and smaller GM volumes in dorsal cortical regions and larger GM volumes in bilateral midbrain. Greater age was independently associated with smaller GM volumes in right BA6, left BA9, left BA46 and larger GM volumes in right midbrain. Greater washing symptom severity was independently associated with smaller GM volume in right BA6, while there was a trend association between greater hoarding symptom severity and lower GM volume in left BA6. Limitations: The sample was relatively small to examine the relationship between symptom scores and GM volumes. Multiple patients were taking medication and had comorbid disorders. Conclusions: These analyses suggest dorsal prefrontal cortical and bilateral midbrain GM abnormalities in OCD that appear to be primarily driven by the effects of total OCD symptom severity. The results regarding the relationship between GM volumes and symptom dimension scores require examination in larger samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
High voltage electrical stimulation has been recommended as a means of accelerating the wound healing process. The effects of high voltage electrical stimulation were evaluated in the treatment of three volunteers with chronic ulcers of the lower limbs. After fifteen weeks of treatment, a reduction was found in the area of all the ulcers, suggesting that high voltage electric stimulation is an effective therapeutic option for chronic ulcers.
Resumo:
Increases in muscular cross-sectional area (CSA) occur in quadriplegics after training, but the effects of neuromuscular electrical stimulation (NMES) along with training are unknown. Thus, we addressed two questions: (1) Does NMES during treadmill gait training increase the quadriceps CSA in complete quadriplegics?; and (2) Is treadmill gait training alone enough to observe an increase in CSA? Fifteen quadriplegics were divided into gait (n = 8) and control (n = 7) groups. The gait group performed training with NMES for 6 months twice a week for 20 minutes each time. After 6 months of traditional therapy, the control group received the same gait training protocol but without NMES for an additional 6 months. Axial images of the thigh were acquired at the beginning of the study, at 6 months (for both groups), and at 12 months for the control group to determine the average quadriceps CSA. After 6 months, there was an increase of CSA in the gait group (from 49.8 +/- A 9.4 cm(2) to 57.3 +/- A 10.3 cm(2)), but not in the control group (from 43.6 +/- A 7.6 cm(2) to 41.8 +/- A 8.4 cm(2)). After another 6 months of gait without NMES in the control group, the CSA did not change (from 41.8 +/- A 8.4 cm(2) to 41.7 +/- A 7.9 cm(2)). The increase in quadriceps CSA after gait training in patients with chronic complete quadriplegia appears associated with NMES.
Resumo:
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-gamma and iNOS expression in the CNS compared to BALB/c mice. The CNS of C578L/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
CpG oligodeoxynucleotides (ODN) have shown to be potent immunoadjuvants for several pathogens, but there is limited information concerning their use in immunization protocols against neosporosis. This study aimed to evaluate the potential of CpG-ODN combined with Neosporar lysate antigen (NLA) or excreted-secreted antigen (NcESA) to induce protective immune response against Neospora caninum infection in mice. C57BL/6 mice were vaccinated subcutaneously three times at 2-week intervals with NLA, NLA+CpG, NcESA, NcESA+CpG, CpG (adjuvant control) or PBS (infection control). Serological assays showed an increased specific IgG2a response in animals immunized with either antigen plus adjuvant and elevated levels of the IgG1 isotype in those vaccinated with antigens alone. Splenocyte proliferative responses upon antigen stimulation were higher in groups immunized with NLA OF NcESA combined with CpG, showing increased IL-12 levels. Also, mice vaccinated with NcESA or NcESA+CpG demonstrated higher IFN-gamma levels and IFN-gamma/IL-10 ratio. After lethal challenge, mice immunized with NLA+CpG or NLA had lower Morbidity score and body weight changes in comparison to other groups, and animals did not succumb during acute infection. In contrast, NcESA+CpG or NcESA groups exhibited the highest morbidity scores, body weight impairment and mortality rates, associated with greatest brain parasite burden and inflammation. In conclusion, CpG-ODN was able to induce a Th1-type humoral immune response with predominant IgG2a levels for either NLA or NcESA, but resulting in an effective Th1-driven cellular immune response and total Protection only when combined with NLA. Vaccination with NcESA alone or combined with CpG resulted in a strong cellular immune response associated with high levels of IFN-gamma and inflammation, rendering mice more susceptible to parasite challenge. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca2+ current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca2+-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.
Resumo:
A single-center experience with pediatric patients who underwent surgery for intractable rolandic epilepsy was reviewed with the aim of identifying putative factors that could influence postoperative seizure outcome in this population. Clinical data of 48 patients under 18 years of age with diagnosis of intractable rolandic epilepsy who underwent surgery from January 1996 to September 2009 were reviewed. Patients` mean age at surgery was 9.9 +/- 5.3 years; mean age at epilepsy onset was 3.9 years; mean seizure duration prior to surgery was 6 years; and mean follow-up was 5.1 years. The most frequent etiologies were cortical dysplasia, astrogliosis, tumors, tuberous sclerosis complex, and Sturge-Weber syndrome, which were observed in 20/48 (41.6%), 10/48 (20.8%), 10/48 (20.8%), 5/48 (10.4%), and 3/48 (6.2%) of the patients, respectively. After surgery, 20 patients (41.6%) showed neurological deficits, which in turn recovered within no longer than 6 months after surgery. Seizure outcome was classified as Engel class I in 29 (60.4%), Engel class II in 10 (20.8%), and Engel class III in 9 (18.8%) of the patients. The factors significantly related with seizure outcome were histological features (tumor versus non-tumor cases, p = 0.04) and lesion site (focal lesions versus non-focal lesions, p = 0.04). Tailored resection of rolandic cortex for intractable epilepsy can be safely performed in children. Accurate mapping of both functional cortex and epileptogenic areas may lead to improved seizure outcome. Tumor as well as focal lesions in hand and face motor areas are associated with good seizure outcome.
Resumo:
The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.
Resumo:
BACKGROUND AND PURPOSE: There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract, and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. MATERIALS AND METHODS: T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. RESULTS: When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. CONCLUSION: The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.
Resumo:
Background: There is only limited knowledge on how the quantification of valvular regurgitation by color Doppler is affected by changing blood viscosity. This study was designed to evaluate the effect of changing blood viscosity on the vena contracta width using an in vitro model of valvular insufficiency capable of providing ample variation in the rate and stroke volume. Methods: We constructed a pulsatile flow model filled with human blood at varying hematocrit (15%, 35%, and 55%) and corresponding blood viscosity (blood/water viscosity: 2.6, 4.8, 9.1) levels in which jets were driven through a known orifice (7 mm(2)) into a 110 mL compliant receiving chamber (compliance: 2.2 mL/mmHg) by a pulsatile pump. In addition, we used variable pump stroke volumes (5, 7.5, and 10 mL) and rates (40, 60, and 80 ppm). Vena contracta region was imaged using a 3.5 MHz transducer. Pressure and volume in the flow model were kept constant during each experimental condition, as well as ultrasound settings. Results: Blood viscosity variation in the experimental range did not induce significant changes in vena contracta dimensions. Also, vena contracta width did not change from normal to low hematocrit and viscosity levels. A very modest increase only in vena contracta dimension was observed at very high level of blood viscosity when hematocrit was set to 55% . Pump rate, in the evaluated range, did not influence vena contracta width. These results in controlled experimental settings suggest that the vena contracta is an accurate quantitative method for quantifying valvular regurgitation even when this condition is associated with anemia, a frequent finding in patients with valvular heart disease.
Resumo:
The medial amygdaloid nucleus (MeA) modulates several physiological and behavioral processes and among them, the cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint evokes cardiovascular responses, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. We presently report effects of MeA pharmacological manipulations on BP and HR responses evoked by acute restraint in rats. Bilateral microinjection of 100 nL of the unspecific synaptic blocker COCl(2) (1 mM) into the MeA increased HR response to acute restraint, without significant effect on the BP response. This result indicates an inhibitory influence of MeA on restraint-evoked HR changes. Injections of the non-selective muscarinic receptor antagonist atropine (3 nmol); the inhibitor of choline uptake hemicholinium (2 nmol) or the selective M(1)-receptor antagonist pirenzepine (6 nmol) caused effects that were similar to those caused by cobalt. These results suggest that local cholinergic neurotransmission and M(1)-receptors mediate the MeA inhibitory influence on restraint-related HR responses. Pretreatment with the M3 receptor antagonist 4-DAMP (4-Diphenylacetoxy-N-methylpiperidine methiodide-2 nmol) did not affect restraint-related cardiovascular responses, reinforcing the idea that M(1)-receptors mediate MeA-related inhibitory influence on restraint-evoked HR increase. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.