886 resultados para black foot
Resumo:
We report on a father and daughter with hand-foot-genital syndrome (HFGS) with typical skeletal and genitourinary anomalies due to a 14-residue polyalanine expansion in HOXA13. This is the largest (32 residues) polyalanine tract so far described for any polyalanine mutant protein. Polyalanine expansion results in protein misfolding, cytoplasmic aggregation and degradation; however, HOXA13 polyalanine expansions appear to act as loss of function mutations in contrast to gain of function for HOXD13 polyalanine expansions. To address this paradox we examined the cellular consequences of polyalanine expansions on HOXA13 protein using COS cell transfection and immunocytochemistry. HOXA13 polyalanine expansion proteins form cytoplasmic aggregates, and distribution between cytoplasmic aggregates or the nucleus is polyalanine tract size-dependent. Geldanamycin, an Hsp90 inhibitor, reduces the steady-state abundance of all polyalanine-expanded proteins in transfected cells. We also found that wild-type HOXA13 or HOXD13 proteins are sequestered in HOXA13 polyalanine expansion cytoplasmic aggregates. Thus, the difference between HOXA13 polyalanine expansion loss-of-function and HOXD13 polyalanine expansion dominant-negative effect is not the ability to aggregate wild-type group 13 paralogs but perhaps to variation in activities associated with refolding, aggregation or degradation of the proteins.
Resumo:
This thesis evaluates a novel asymmetric capacitor incorporating a carbon foam supported nickel hydroxide positive electrode and a carbon black negative electrode. A series of symmetric capacitors were prepared to characterize the carbon black (CB) negative electrode. The influence of the binder, PTFE, content on the cell properties was evaluated. X-ray diffraction characterization of the nickel electrode during cycling is also presented. The 3 wt% and 5 wt% PTFE/CB symmetric cells were examined using cyclic voltammetry (CV) and constant current charge/discharge measurements. As compared with symmetric cells containing more PTFE, the 3 wt% cell has the highest average specific capacitance, energy density and power density over 300 cycles, 121.8 F/g, 6.44 Wh/kg, and 604.1 W/kg, respectively. Over the 3 to 10 wt% PTFE/CB range, the 3 wt% sample exhibited the lowest effective resistance and the highest BET surface area. Three asymmetric cells (3 wt% PTFE/CB negative electrode and a nickel positive) were fabricated; cycle life was examined at 3 current densities. The highest average energy and power densities over 1000 cycles were 20 Wh/kg (21 mA/cm2) and 715 W/kg (31 mA/cm2), respectively. The longest cycle life was 11,505 cycles (at 8 mA/cm2), with an average efficiency of 79% and an average energy density of 14 Wh/kg. The XRD results demonstrate that the cathodically deposited nickel electrode is a typical α-Ni(OH)2 with the R3m structure (ABBCCA stacking); the charged electrodes are 3γ-NiOOH with the same stacking as the α-type; the discharged electrodes (including as-formed electrode) are aged to β’-Ni(OH)2 (a disordered β) with the P3m structure (ABAB stacking). A 3γ remnant was observed.
Resumo:
Differential muscle weakness can cause a cavus foot deformity. Presenting complaints in the hindfoot may include ankle instability, secondary arthritis, or peroneal tendonitis. Presenting complaints in the forefoot may include stress fractures, callus formation over the lateral border of the foot, claw toes, first ray overload, and metatarsalgia. More general presenting complaints can include a drop-foot gait, decreased walking tolerance, and difficulty with shoe or orthotic fitting. To surgically correct the foot shape, soft tissue contractures need to be released, bone deformity corrected, and muscles balanced to optimize their strength and prevent recurrence of the deformity. This article reviews the diagnosis and management of the cavovarus foot secondary to longstanding muscle imbalance.
Resumo:
Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.
Resumo:
Duchenne muscular dystrophy (DMD) is a progressive disease affecting skeletal and cardiac muscle, as well as bone. Long term disuse and glucocorticoid treatments cause progressive osteoporosis in DMD patients, leading to an increase in fracture incidence. Treatments for osteoporosis in these patients have not been widely explored. Parathyroid hormone (PTH), an anabolic treatment for post-menopausal osteoporosis, could benefit DMD patients by improving skeletal properties and reducing fracture risk. Other PTH analogues are not currently FDA approved to treat osteoporosis, but may have improved osteogenic effects compared to the human analogue. Black bear PTH is especially promising as an osteoporosis treatment for the DMD population. Black bears are unique models of bone maintenance during disuse, since during six months of inactivity (hibernation), they maintain skeletal properties, unlike other hibernators. Additionally, black bear PTH has been correlated to bone formation markers during hibernation, indicating it may be, at least in part, the mechanism by which bears maintain bone during disuse. Employing black bear PTH as a treatment for osteoporosis in DMD patients could greatly improve quality of life for these individuals, and reduce the pain and expense associated with frequent fractures.
Resumo:
During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.
Resumo:
This work is conducted to study the geological and petrophysical features of the Trenton- Black River limestone formation. Log curves, crossplots and mineral identification methods using well-log data are used to determine the components and analyze changes in lithology. Thirty-five wells from the Michigan Basin are used to define the mineralogy of Trenton-Black River limestone. Using the different responses of a few log curves, especially gamma-ray, resistivity and neutron porosity, the formation tops for the Utica shale, the Trenton limestone, the Black River limestone and the Prairie du Chien sandstone are identified to confirm earlier authors’ work and provide a basis for my further work. From these, an isopach map showing the thickness of Trenton-Black River formation is created, indicating that its maximum thickness lies in the eastern basin and decreases gradually to the west. In order to obtain more detailed lithological information about the limestone formations at the thirty-five wells, (a) neutron-density and neutron-sonic crossplots, (b) mineral identification methods, including the M-N plot, MID plot, ϱmaa vs. Umaa MID plot, and the PEF plot, and (c) a modified mineral identification technique are applied to these wells. From this, compositions of the Trenton-Black River formation can be divided into three different rock types: pure limestone, partially dolomitized limestone, and shaly limestone. Maps showing the fraction of dolomite and shale indicate their geographic distribution, with dolomite present more in the western and southwestern basin, and shale more common in the north-central basin. Mineral identification is an independent check on the distribution found from other authors, who found similar distributions based on core descriptions. The Thomas Stieber method of analysis is best suited to sand-shale sequences, interpreting hree different distributions of shale within sand, including dispersed, laminated and structural. Since this method is commonly applied in clastic rocks, my work using the Thomas Stieber method is new, as an attempt to apply this technique, developed for clastics, to carbonate rocks. Based on the original assumption and equations with a corresponding change to the Trenton-Black River formation, feasibility of using the Thomas Stieber method in carbonates is tested. A graphical display of gamma-ray versus density porosity, using the properties of clean carbonate and pure shale, suggests the presence of laminated shale in fourteen wells in this study. Combined with Wilson’s study (2001), it is safe to conclude that when shale occurs in the Trenton-Black River formation, it tends to be laminated shale.