993 resultados para biogeochemical constituents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated spatial and temporal changes in quantity, quality and bioavailability of organic matter in abyssal sediments of the northeastern Atlantic. Sediment samples were collected in the Porcupine Abyssal Plain (PAP, 4800 m depth) during 6 oceanographic cruises from September 1996 to October 1998 down to a depth of 15 cm. Sedimentary proteins, carbohydrates and lipids, and their enzymatically hydrolysable fractions showed significant temporal changes, but different biochemical classes displayed different temporal patterns. Total proteins, carbohydrates and lipids displayed high concentrations, whereas the potentially hydrolysable fractions accounted for only about 10% of their total pools. From September 1996 to October 1998, bioavailable organic carbon concentration in the sediments decreased about 10 gC/m**2 indicating that this benthic system was not steady state. Hydrolysed proteins and carbohydrates were characterised by different vertical patterns. Carbohydrates increased their relative significance with depth in the sediment indicating a shift of organic matter bioavailability with important trophodynamic implications for subsurface consumers. Vertical profiles of reactive and refractory organic carbon in PAP sediments indicate that organic matter bioavailability in deeper sediment layers is higher than expected from previous theoretical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogeochemical reef studies carried out in 1981 and 1984 found low concentration of total natural and anthropogenic hydrocarbons in inshore waters. Detection of lignin in marine and bottom sediments indicates that the land has major effect on makeup of organic matter there. Comparison of compositions of organic matter in sea water, suspended matter and bottom sediments indicated that it was altered rapidly by the reef community. Thus, in the inshore zone of the island, runoff from the land is important in supplying nutrients to the reef ecosystem alongside with transport of nutrients by deep waters. Concentrations of nutri¬ents (N, P) in the inshore zone are higher than in waters of the tropical part of the ocean. Nitrogen is the limiting element in development of phytoplankton in the inshore zone.