948 resultados para best estimate method
Resumo:
Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Resumo:
To determine the most adequate number and size of tissue microarray (TMA) cores for pleomorphic adenoma immunohistochemical studies. Eighty-two pleomorphic adenoma cases were distributed in 3 TMA blocks assembled in triplicate containing 1.0-, 2.0-, and 3.0-mm cores. Immunohistochemical analysis against cytokeratin 7, Ki67, p63, and CD34 were performed and subsequently evaluated with PixelCount, nuclear, and microvessel software applications. The 1.0-mm TMA presented lower results than 2.0- and 3.0-mm TMAs versus conventional whole section slides. Possibly because of an increased amount of stromal tissue, 3.0-mm cores presented a higher microvessel density. Comparing the results obtained with one, two, and three 2.0-mm cores, there was no difference between triplicate or duplicate TMAs and a single-core TMA. Considering the possible loss of cylinders during immunohistochemical reactions, 2.0-mm TMAs in duplicate are a more reliable approach for pleomorphic adenoma immunohistochemical study.
Resumo:
Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles.
Resumo:
An HPLC-PAD method using a gold working electrode and a triple-potential waveform was developed for the simultaneous determination of streptomycin and dihydrostreptomycin in veterinary drugs. Glucose was used as the internal standard, and the triple-potential waveform was optimized using a factorial and a central composite design. The optimum potentials were as follows: amperometric detection, E1=-0.15V; cleaning potential, E2=+0.85V; and reactivation of the electrode surface, E3=-0.65V. For the separation of the aminoglycosides and the internal standard of glucose, a CarboPac™ PA1 anion exchange column was used together with a mobile phase consisting of a 0.070 mol L(-1) sodium hydroxide solution in the isocratic elution mode with a flow rate of 0.8 mL min(-1). The method was validated and applied to the determination of streptomycin and dihydrostreptomycin in veterinary formulations (injection, suspension and ointment) without any previous sample pretreatment, except for the ointments, for which a liquid-liquid extraction was required before HPLC-PAD analysis. The method showed adequate selectivity, with an accuracy of 98-107% and a precision of less than 3.9%.
Resumo:
Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.
Resumo:
A capillary zone electrophoresis (CE) method was developed for the determination of the biocide 2,2-dibromo-3-nitrilo-propionamide (DBNPA) in water used in cooling systems. The biocide is indirectly determined by CE measurement of the concentration of bromide ions produced by the reaction between the DBNPA and bisulfite. The relationship between the bromide peak areas and the DBNPA concentrations showed a good linearity and a coefficient of determination (R(2)) of 0.9997 in the evaluated concentration range of 0-75 μmol L(-1). The detection and quantification limits for DBNPA were 0.23 and 0.75 μmol L(-1), respectively. The proposed CE method was successfully applied for the analysis of samples of tap water and cooling water spiked with DBNPA. The intra-day and inter-day (intermediary) precisions were lower than 2.8 and 6.2%, respectively. The DBNPA concentrations measured by the CE method were compared to the values obtained by a spectrophotometric method and were found to agree well.
Resumo:
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.
Resumo:
Ropivacaine (RVC) is an aminoamide local anesthetic widely used in surgical procedures. Studies with RVC encapsulated in liposomes and complexed in cyclodextrins have shown good results, but in order to use RVC for lengthy procedures and during the postoperative period, a still more prolonged anesthetic effect is required. This study therefore aimed to provide extended RVC release and increased upload using modified liposomes. Three types of vesicles were studied: (i) large multilamellar vesicle (LMV), (ii) large multivesicular vesicle (LMVV) and (iii) large unilamellar vesicle (LUV), prepared with egg phosphatidylcholine/cholesterol/α-tocopherol (4:3:0.07 mol%) at pH 7.4. Ionic gradient liposomes (inside: pH 5.5, pH 5.5 + (NH4)2SO4 and pH 7.4 + (NH4)2SO4) were prepared and showed improved RVC loading, compared to conventional liposomes (inside: pH 7.4). An high-performance liquid chromatography analytical method was validated for RVC quantification. The liposomes were characterized in terms of their size, zeta potential, polydispersion, morphology, RVC encapsulation efficiency (EE(%)) and in vitro RVC release. LMVV liposomes provided better performance than LMV or LUV. The best formulations were prepared using pH 5.5 (LMVV 5.5in) or pH 7.4 with 250 mM (NH4)2SO4 in the inner aqueous core (LMVV 7.4in + ammonium sulfate), enabling encapsulation of as much as 2% RVC, with high uptake (EE(%) ∼70%) and sustained release (∼25 h). The encapsulation of RVC in ionic gradient liposomes significantly extended the duration of release of the anesthetic, showing that this strategy could be a viable means of promoting longer-term anesthesia during surgical procedures and during the postoperative period.
Resumo:
A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.
Resumo:
A rapid and low cost method to determine Cr(VI) in soils based upon alkaline metal extraction at room temperature is proposed as a semi-quantitative procedure to be performed in the field. A color comparison with standards with contents of Cr(VI) in the range of 10 to 150 mg kg-1 was used throughout. For the different types of soils studied, more than 75% of the fortified soluble Cr(VI) were recovered for all levels of spike tested for both the proposed and standard methods. Recoveries of 83 and 99% were obtained for the proposed and the standard methods, respectively, taking into account the analysis of a heavily contaminated soil sample.
Resumo:
This works describes the use of experimental design and surface response methodology for optimization of saponin extraction from Ampelozizyphus amazonicus. For this purpose, a method employing extraction based on maceration assisted by ultrasound technique was utilized. The following factors were studied: extraction length of time and solvent composition. The total saponin was determined by using a gravimetric method and the results expressed by their relative proportion to total crude extract. For the specific condition, 60% hydro-alcoholic solution and 18 minutes extraction length of time has shown the best results. This method can be useful for extraction of substances with biological importance
Resumo:
The objectives of this work was to estimate the number of soil subsamples considering the classical statistics and geostatistics and determine the spatial variability of soil fertility attributes of an Ultisol, with clay texture, in an area of regenerating natural vegetation in Alegre - ES. Soil samples were collected in a depth of 0.0-0.2 m, at the crossing points of a regular grid, comprising a total of 64 points located at 10 m-intervals. The area presented low fertility soil. Considering a variation of 5% around the mean in the classic statistics, it is necessary a larger number of samples in relation to geostatistics. All the chemical attributes showed moderate to high spatial dependence, except for the effective cation exchange capacity (CECe), which showed pure nugget effect. The spherical semivariogram model gave the best fit to the data. Isoline maps allowed visualizing the differentiated spatial distribution of the contents of soil chemical attributes.
Resumo:
The aim of this research was to study the effect of chemical additives (lime and Portland cement) associated with sodium silicate on soil in order to obtain compressed soil bricks. Mini panels were constructed with such bricks being their physical and mechanical characteristics determined in laboratory conditions and their behavior evaluated through the association of destructive and non-destructive methods. For this purpose a sandy soil and a finely divided one were added to Portland cement and lime in the dosage of 6% and 10% taken in dry weight basis in relation to the dry soil. The sodium silicate dosage of 4% was also taken in dry weight basis in relation to the dry soil-cement or to the dry soil-lime. The compressed soil bricks were cured in a humidity chamber for 7; 28; 56 and 91 days. The bricks were laid on the fourteenth day to form prismatic mini panels each one with four layers of bricks. After 28; 56 and 91 days the mini panels were submitted to both; ultrasonic and compressive tests to determine its elastic properties (dynamic modulus) and the compressive resistance. The best results in terms of compressive strength, water absorption capacity or dynamic elastic modulus, were reached by the sandy soil added to 10% of Portland cement or lime associated with sodium silicate.