969 resultados para attori, concorrenza, COOP, Akka, benchmark


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation into exchange-traded fund (ETF) outperforrnance during the period 2008-2012 is undertaken utilizing a data set of 288 U.S. traded securities. ETFs are tested for net asset value (NAV) premium, underlying index and market benchmark outperformance, with Sharpe, Treynor, and Sortino ratios employed as risk-adjusted performance measures. A key contribution is the application of an innovative generalized stepdown procedure in controlling for data snooping bias. We find that a large proportion of optimized replication and debt asset class ETFs display risk-adjusted premiums with energy and precious metals focused funds outperforming the S&P 500 market benchmark

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate a collision-sensitive secondary network that intends to opportunistically aggregate and utilize spectrum of a primary network to achieve higher data rates. In opportunistic spectrum access with imperfect sensing of idle primary spectrum, secondary transmission can collide with primary transmission. When the secondary network aggregates more channels in the presence of the imperfect sensing, collisions could occur more often, limiting the performance obtained by spectrum aggregation. In this context, we aim to address a fundamental query, that is, how much spectrum aggregation is worthy with imperfect sensing. For collision occurrence, we focus on two different types of collision: one is imposed by asynchronous transmission; and the other by imperfect spectrum sensing. The collision probability expression has been derived in closed-form with various secondary network parameters: primary traffic load, secondary user transmission parameters, spectrum sensing errors, and the number of aggregated sub-channels. In addition, the impact of spectrum aggregation on data rate is analysed under the constraint of collision probability. Then, we solve an optimal spectrum aggregation problem and propose the dynamic spectrum aggregation approach to increase the data rate subject to practical collision constraints. Our simulation results show clearly that the proposed approach outperforms the benchmark that passively aggregates sub-channels with lack of collision awareness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the optimal design of fabricated steel beams for long-span portal frames. The design optimisation takes into account ultimate as well as serviceability limit states, adopting deflection limits recommended by the Steel Construction Institute (SCI). Results for three benchmark frames demonstrate the efficiency of the optimisation methodology. A genetic algorithm (GA) was used to optimise the dimensions of the plates used for the columns, rafters and haunches. Discrete decision variables were adopted for the thickness of the steel plates and continuous variables for the breadth and depth of the plates. Strategies were developed to enhance the performance of the GA including solution space reduction and a hybrid initial population half of which is derived using Latin hypercube sampling. The results show that the proposed GA-based optimisation model generates optimal and near-optimal solutions consistently. A parametric study is then conducted on frames of different spans. A significant variation in weight between fabricated and conventional hot-rolled steel portal frames is shown; for a 50 m span frame, a 14–19% saving in weight was achieved. Furthermore, since Universal Beam sections in the UK come from a discrete section library, the results could also provide overall dimensions of other beams that could be more efficient for portal frames. Eurocode 3 was used for illustrative purposes; any alternative code of practice may be used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article examines the nature of gender politics in Northern Ireland since the 1998 Good Friday/Belfast Agreement. Taking gender justice as a normative democratic framework, the article argues that despite the promise of women's equal participation in public and political life written into the Agreement, parties have delivered varied responses to integrating women, women's interests and perspectives into politics and policy platforms. This contrasts with general patterns supporting women's increased participation in social and political life. The article discusses women's descriptive and substantive representation through electoral outcomes and party manifestos, using the demands of successive women's manifestos as a benchmark. It concludes that while parties have given less recognition and inclusion to women than one might have expected in a new political context, the push for democratic accountability will ensure that gender politics will continue to have a place on the political agenda for some time to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Economic dispatch (ED) problems often exhibit non-linear, non-convex characteristics due to the valve point effects. Further, various constraints and factors, such as prohibited operation zones, ramp rate limits and security constraints imposed by the generating units, and power loss in transmission make it even more challenging to obtain the global optimum using conventional mathematical methods. Meta-heuristic approaches are capable of solving non-linear, non-continuous and non-convex problems effectively as they impose no requirements on the optimization problems. However, most methods reported so far mainly focus on a specific type of ED problems, such as static or dynamic ED problems. This paper proposes a hybrid harmony search with arithmetic crossover operation, namely ACHS, for solving five different types of ED problems, including static ED with valve point effects, ED with prohibited operating zones, ED considering multiple fuel cells, combined heat and power ED, and dynamic ED. In this proposed ACHS, the global best information and arithmetic crossover are used to update the newly generated solution and speed up the convergence, which contributes to the algorithm exploitation capability. To balance the exploitation and exploration capabilities, the opposition based learning (OBL) strategy is employed to enhance the diversity of solutions. Further, four commonly used crossover operators are also investigated, and the arithmetic crossover shows its efficiency than the others when they are incorporated into HS. To make a comprehensive study on its scalability, ACHS is first tested on a group of benchmark functions with a 100 dimensions and compared with several state-of-the-art methods. Then it is used to solve seven different ED cases and compared with the results reported in literatures. All the results confirm the superiority of the ACHS for different optimization problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple yet efficient harmony search (HS) method with a new pitch adjustment rule (NPAHS) is proposed for dynamic economic dispatch (DED) of electrical power systems, a large-scale non-linear real time optimization problem imposed by a number of complex constraints. The new pitch adjustment rule is based on the perturbation information and the mean value of the harmony memory, which is simple to implement and helps to enhance solution quality and convergence speed. A new constraint handling technique is also developed to effectively handle various constraints in the DED problem, and the violation of ramp rate limits between the first and last scheduling intervals that is often ignored by existing approaches for DED problems is effectively eliminated. To validate the effectiveness, the NPAHS is first tested on 10 popular benchmark functions with 100 dimensions, in comparison with four HS variants and five state-of-the-art evolutionary algorithms. Then, NPAHS is used to solve three 24-h DED systems with 5, 15 and 54 units, which consider the valve point effects, transmission loss, emission and prohibited operating zones. Simulation results on all these systems show the scalability and superiority of the proposed NPAHS on various large scale problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The redox catalyst ruthenium dioxide, prepared via the Adams technique, i.e.Ru(Adams), is used as a water oxidation catalyst using the oxidants (i) Ce(IV) in 0.5M H2SO4 and (ii) periodate in 0.5 M H2SO4, water and 0.1 M KOH. Like Ce(IV),periodate is a very strong oxidant that is able to oxidise water to oxygen and can bereadily monitored spectrophotometrically at 280 nm, compared with 430 nm for Ce(IV).More importantly, unlike Ce(IV), which is unstable towards hydrolysis above pH 1,periodate is stable in acid, water and strong alkali. A spectrophotometric study of thekinetics of periodate reduction, and concomitant oxidation of water to O2, reveals thatin the presence of a suitable redox catalyst, Ru(Adams) in this work, periodate is ableto effect the stoichiometric oxidation of water, with a turnover number > 64. In justwater, the kinetics of the latter reaction appear diffusion-controlled, due to the largethermodynamic driving force, a measure of which is the difference in redox potential,i.e. ∆E = 423 mV. As this difference is decreased, ∆E = 396 mV in acid and 290 mVin strong alkali (0.1 M KOH), the kinetics become increasingly activation-controlledand slower. These findings are discussed briefly with regard to the possible use of (i)periodate as an alternative oxidant in the rapid screening of new potential wateroxidation catalyst material powders that are stable only under near neutral and/oralkaline conditions, and (ii) Ru(Adams) as a benchmark catalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual salience is an intriguing phenomenon observed in biological neural systems. Numerous attempts have been made to model visual salience mathematically using various feature contrasts, either locally or globally. However, these algorithmic models tend to ignore the problem’s biological solutions, in which visual salience appears to arise during the propagation of visual stimuli along the visual cortex. In this paper, inspired by the conjecture that salience arises from deep propagation along the visual cortex, we present a Deep Salience model where a multi-layer model based on successive Markov random fields (sMRF) is proposed to analyze the input image successively through its deep belief propagation. As a result, the foreground object can be automatically separated from the background in a fully unsupervised way. Experimental evaluation on the benchmark dataset validated that our Deep Salience model can consistently outperform eleven state-of-the-art salience models, yielding the higher rates in the precision-recall tests and attaining the best F-measure and mean-square error in the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although visual surveillance has emerged as an effective technolody for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacyrelated applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest, and then applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain, and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.