900 resultados para assistive device
Resumo:
Background: The goal of stroke rehabilitation has shifted from mere survival of a victim to how well a survivor can be effectively reintegrated back into the community. Objectives: The present study determined the level of satisfaction with community reintegration (CR) and related factors among Nigerian community-dwelling stroke survivors (CDSS). Methods: This was a cross-sectional survey of 71 volunteering CDSS (35 males, 36 females) from selected South-Eastern Nigerian communities. Reintegration to Normal Living Index was used to assess participants’ CR. Data was analysed using Spearman rank-order correlation, Kruskal-Wallis and Mann-Whitney U tests at p≤0.05. Results: Participants generally had deficits in CR which was either mild/moderate (52.1%) or severe (47.9%). Scores in the CR domains of distance mobility, performance of daily activities, recreational activities and family roles were particularly low (median scores ≤ 4). CR was significantly correlated with and influenced by age (r=-0.35; p=0.00) and presence/absence of diabetes mellitus (u=3.56.50; p=0.01), pre- (k=6.13; p=0.05) and post-stroke employment (k=18.26; p=0.00) status, type of assistive mobility device being used (AMD) (k=25.39; p=0.00) and support from the community (k=7.15; p=0.03) respectively. Conclusion: CR was generally poor for this CDSS sample. Survivors who are older, having diabetes as co-morbidity, using AMD (particularly wheel-chair) and without employment pre- and/or post-stroke may require keener attention. Rehabilitation focus may be targeted at enhancing mobility functions, vocational and social skills.
Resumo:
The noise emanating from generators has adverse effects on our health. In view of this, this paper reports the development of soundproof device for 950Watt rated generators which are widely used portable generators. Performance evaluation of the soundproof device was carried out, and the sound pressure level of the generator was reduced by 7.64, 6.24, 6.82, 8.72 and 8.68dB at distances of 0.70, 1.40, 2.10, 2.80 and 3.50m from the generator respectively.
Resumo:
MATCH (Multidisciplinary Assessment of Technology Centre for Healthcare) is a new collaboration in the UK that aims to support the healthcare sector by creating methods to assess the value of medical devices from concept through to mature product. A major aim of MATCH is to encourage the inclusion of the user throughout the product lifecycle in order to achieve devices that truly meet the requirements of their users. A review of the published literature indicates that user requirements are mainly collected during the design and evaluation stage of the product lifecycle whilst other areas, including the concept stage, have less user involvement. Complementing the literature review is an in-depth consultation with the medical device industry, which has identified a number of barriers encountered by companies when attempting to capture user requirements. These will be addressed by a number of case study projects, performed in collaboration with our industrial partners, that will examine the application and utility of different approaches to collecting and analysing data on user requirements. MATCH is focused on providing advice to device developers on how to select and apply methods that have maximum theoretical strength, practical application, cost-effectiveness and likelihood of wide sector acceptance. Feedback will be sought in order to ensure that the needs of the diverse medical device sector are met.
How does the healthcare industry involve users in medical device development? Pointers for UbiHealth
Resumo:
This paper introduces the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) and outlines the problem of integrating a user-centred approach for development of medical devices together with the information and communication technology environments in which they are increasingly required to operate. We highlight some of the regulatory requirements that are relevant to user needs consideration in medical device development. Finally, we reveal a range of limitations in the current practice of the medical device industry in the area of user needs capture, based on responses from interviews with MATCH’s industry partners.
Resumo:
Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.
Resumo:
This research investigated annular field reversed configuration (AFRC)devices for high power electric propulsion by demonstrating the acceleration of these plasmoids using an experimental prototype and measuring the plasmoid's velocity, impulse, and energy efficiency. The AFRC plasmoid translation experiment was design and constructed with the aid of a dynamic circuit model. Two versions of the experiment were built, using underdamped RLC circuits at 10 kHz and 20 kHz. Input energies were varied from 100 J/pulse to 1000 J/pulse for the 10 kHz bank and 100 J/pulse for the 20 kHz bank. The plasmoids were formed in static gas fill of argon, from 1 mTorr to 50 mTorr. The translation of the plasmoid was accomplished by incorporating a small taper into the outer coil, with a half angle of 2°. Magnetic field diagnostics, plasma probes, and single-frame imaging were used to measure the plasmoid's velocity and to diagnose plasmoid behavior. Full details of the device design, construction, and diagnostics are provided in this dissertation. The results from the experiment demonstrated that a repeatable AFRC plasmoid was produced between the coils, yet failed to translate for all tested conditions. The data revealed the plasmoid was limited in lifetime to only a few (4-10) μs, too short for translation at low energy. A global stability study showed that the plasma suffered a radial collapse onto the inner wall early in its lifecycle. The radial collapse was traced to a magnetic pressure imbalance. A correction made to the circuit was successful in restoring an equilibrium pressure balance and prolonging radial stability by an additional 2.5 μs. The equilibrium state was sufficient to confirm that the plasmoid current in an AFRC reaches a steady-state prior to the peak of the coil currents. This implies that the plasmoid will always be driven to the inner wall, unless it translates from the coils prior to peak coil currents. However, ejection of the plasmoid before the peak coil currents results in severe efficiency losses. These results demonstrate the difficulty in designing an AFRC experiment for translation as balancing the different requirements for stability, balance, and efficient translation can have competing consequences.
Resumo:
Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.
Resumo:
The present dissertation aimed to develop a new microfluidic system for a point-of-care hematocrit device. Stabilization of microfluidic systems via surfactant additives and integration of semipermeable SnakeSkin® membranes was investigated. Both methods stabilized the microfluidic systems by controlling electrolysis bubbles. Surfactant additives, Triton X-100 and SDS stabilized promoted faster bubble detachment at electrode surfaces by lowering surface tension and decreased gas bubble formation by increasing gas solubility. The SnakeSkin® membranes blocked bubbles from entering the microchannel and thus less disturbance to the electric field by bubbles occurred in the microchannel. Platinum electrode performance was improved by carbonizing electrode surface using red blood cells. Irreversibly adsorbed RBCs lysed on platinum electrode surfaces and formed porous carbon layers while current response measurements. The formed carbon layers increase the platinum electrode surface area and thus electrode performance was improved by 140 %. The microfluidic system was simplified by employing DC field to use as a platform for a point-of-care hematocrit device. Feasibility of the microfluidic system for hematocrit determination was shown via current response measurements of red blood cell suspensions in phosphate buffered saline and plasma media. The linear trendline of current responses over red blood cell concentration was obtained in both phosphate buffered saline and plasma media. This research suggested that a new and simple microfluidic system could be a promising solution to develop an inexpensive and reliable point-of-care hematocrit device.
Resumo:
Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.
Resumo:
This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. ^ Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. ^ Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm. ^
Resumo:
Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.^
Resumo:
The Brain A project of the Iowa Department of Public Health and the Iowa Advisory Council on Brain Injuries, produced with assistance from the Iowa Program for Assistive Technology University of Iowa Center for Disabilities and Development and Easter Seals This booklet was supported in part by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number H21MC26929 titled: Traumatic Brain Injury Implementation. This information or content and conclusions are those of the authors/s and should not be construed as the official position or policy of, nor should any endorsements be inferred by, HRSA, HHS, or the U.S. Government.
Resumo:
Currently, at the SC Commission for the Blind, there is no opportunity for computer training for adults in the Older Blind Program. The Older Blind Program has to look for outside partners to make this service viable again. This project proposes that the OB Program partner with regional senior and recreation centers to establish a community-based training program that is both effective and is of minimal cost to the agency and to the partnering centers.
Resumo:
To reduce the amount of time needed to solve the most complex Constraint Satisfaction Problems (CSPs) usually multi-core CPUs are used. There are already many applications capable of harnessing the parallel power of these devices to speed up the CSPs solving process. Nowadays, the Graphics Processing Units (GPUs) possess a level of parallelism that surpass the CPUs, containing from a few hundred to a few thousand cores and there are much less applications capable of solving CSPs on GPUs, leaving space for possible improvements. This article describes the work in progress for solving CSPs on GPUs and CPUs and compares results with some state-of-the-art solvers, presenting already some good results on GPUs.
Resumo:
Gli ologrammi sono parte integrante della cultura pop a partire dagli anni 50, tanto che ad oggi sentirne parlare non desta più scalpore. Dal lato pratico, invece, solo negli ultimi anni sono state fatte ricerche approfondite con lo scopo di realizzarli. Fra i dispositivi attualmente in commercio, in pochi sono degni di nota e presentano numerose limitazioni, questo perché è molto difficile riuscire a progettare un sistema che permetta di illuminare dei punti specifici in uno spazio tridimensionale per lunghi periodi. In questa tesi si illustrano i principi di funzionamento ed il progetto per un nuovo dispositivo, diverso da quelli fino ad ora realizzati, che sfrutti il decadimento spontaneo di atomi di rubidio eccitati tramite due fasci laser opportunamente incrociati. Nel punto di incrocio si produce luce visibile a 420 nm. Con un opportuno sistema di specchi che muovono velocemente il punto di intersezione tra i due fasci è possibile realizzare un vero ologramma tridimensionale visibile da quasi ogni angolazione.