969 resultados para antigen specific expression
Phylum-wide transcriptome analysis of oogenesis and early embryogenesis in selected nematode species
Resumo:
Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological processes important decisions must be made to form the embryo and hence ensure the next generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be supplied to the embryo. (2) Polarity must be established and axes must be specified. While incorporation of maternal gene products occurs during oogenesis, the time point of polarity establishment and axis specification varies among species, as it is accomplished either prior, during, or after fertilisation. But not only the time point when these events take place varies among species but also the underlying mechanisms by which they are triggered. For the nematode model Caenorhabditis elegans the underlying pathways and gene regulatory networks (GRNs) are well understood. It is known that there the sperm entry point initiates a primary polarity in the 1-celled egg and with it the establishment of the anteroposterior axis. However, studies of other nematodes demonstrated that polarity establishment can be independent of sperm entry (Goldstein et al., 1998; Lahl et al., 2006) and that cleavage patterns, symmetry formation and cell specification also differ from C. elegans. In contrast to the studied Chromadorea (more derived nematodes including C. elegans), embryos of some marine Enoplea (more basal representatives) even show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov and Panchin 1998). The underlying pathways controlling the obviously variant embryonic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I addressed this issue by performing a detailed unbiased comparative transcriptome analysis based on microarrays and RNA sequencing of selected developmental stages in a variety of nematodes from different phylogenetic branches with C. elegans as a reference system and a nematomorph as an outgroup representative. In addition, I made use of available genomic data to determine the presence or absence of genes for which no expression had been detected. In particular, I focussed on components of selected pathways or GRNs which are known to play essential roles during C. elegans development and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt and sex determination signaling are absent in these species. In this respect, I identified female-specific expression of potential polarity associated genes during gonad development and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity complex does not exist in these nematodes. Instead, transcriptomes of nematodes (including C. elegans), show expression of other polarity-associated complexes such as the Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nematodes and nematomorphs to initiate polarity during early embryogenesis. I could show that crucial pathways of axis specification, such as Wnt and BMP are very different in C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is mediated by four paralogous beta-catenins, while other Chromadorea have fewer and Enoplea only one beta-catenin. The transcriptomes of R. culicivorax and the nematomorph show that regulators of BMP (e.g. Chordin), are specifically expressed during early embryogenesis only in Enoplea and the close outgroup of nematomorphs. In conclusion, my results demonstrate that the molecular machinery controlling oogenesis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be taken as a general model for nematode development. Under this perspective, Enoplean nematodes show more similarities with outgroups than with C. elegans. It appears that certain pathway components were lost or gained during evolution and others adopted new functions. Based on my findings I can conjecture, which pathway components may be ancestral and which were newly acquired in the course of nematode evolution.
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+ T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
La thérapie antirétrovirale prévient la transmission mère-enfant du VIH dans plus de 98% des cas lorsqu’administrée pendant la grossesse, le travail et au nouveau-né. L’accessibilité à la thérapie antirétrovirale dans près de 70% des 1,5 millions cas de grossesses VIH+ dans le monde mène à la naissance de plus d’un million d’enfants exposés non infectés chaque année. Le nombre d’enfants exposés non infectés est à la hausse ainsi que les préoccupations concernant leur santé. En effet, plusieurs groupes ont signalé une augmentation de la morbidité et de la mortalité chez les enfants exposés non infectés. L’analyse des données rétrospectives de 705 enfants exposés non infectés de la cohorte mère-enfant du CMIS a révélé qu’à 2 mois d’âge, les enfants nés de mères ayant une charge virale supérieure à 1,000 copies d’ARN / ml avaient une fréquence de lymphocytes B significativement plus élevés par rapport aux enfants exposés non infectés nés de mères ayant une charge virale indétectable. L’objectif de cette étude est de caractériser ces anomalies. Les lymphocytes, provenant du sang de cordon ombilical et de sang veineux obtenu à 6 et 12 mois d’âge, ont été phénotypés par cytométrie en flux à l’aide des marqueurs CD3 / CD10 / CD14 / CD16 / CD19 / CD20 / CD21 / CD27 / IgM pour les lymphocytes B et CD4 / CD8 / CD3 / CCR7 / CD45RA pour les lymphocytes T. De plus, afin d’étudier les capacités fonctionnelles des lymphocytes B CD19+, la réponse antigène-spécifique au vaccin antitétanique a été mesurée par marquage avec des tétramères fluorescents de fragment C du toxoïde tétanique. Nos travaux ont mis en évidence des différences statistiquement significatives entre les enfants exposés non-infectés (ENI) nés de mères avec une charge virale détectable comparativement à ceux nés de mères avec une charge virale indétectable. À la naissance, les enfants ENI nés de mères avec une charge virale détectable avaient significativement moins de lymphocytes B totaux, plus de lymphocytes B mémoires classiques, activés, plasmablastes et lymphocytes T CD8+ mémoires centrales. À 6 mois, ils avaient significativement plus de lymphocytes B naïfs et significativement moins de lymphocytes T CD8+ effecteurs mémoires. À 12 mois d’âge, ils avaient significativement plus de lymphocytes B et T CD8+ totaux; significativement moins de lymphocytes T CD4+ totaux et leurs lymphocytes T affichaient un profil significativement plus activé (plus de cellules mémoires). L’analyse de la réponse antigène-spécifique a révélé une fréquence plus élevé de lymphocytes B mémoires IgM+ suggérant que les enfants nés de mères avec une virémie détectable ont plus de mal à établir une mémoire immunitaire efficace face au vaccin antitétanique. Nos données suggèrent qu’il y a exposition durant le premier trimestre de grossesse à la virémie maternelle et que cette exposition impacte le système immunitaire en développement du fœtus. Les mécanismes sous-jacents causant ces anomalies doivent encore être élucidés et l’épuisement du compartiment T à la naissance et à 6 mois reste à être investigué. Dans un pays industrialisé où l’accès aux soins est facilité, ces anomalies ont des conséquences modérées mais dans des pays à faible et moyen revenu, les conséquences peuvent être beaucoup plus tragiques voir fatales.
Resumo:
La thérapie antirétrovirale prévient la transmission mère-enfant du VIH dans plus de 98% des cas lorsqu’administrée pendant la grossesse, le travail et au nouveau-né. L’accessibilité à la thérapie antirétrovirale dans près de 70% des 1,5 millions cas de grossesses VIH+ dans le monde mène à la naissance de plus d’un million d’enfants exposés non infectés chaque année. Le nombre d’enfants exposés non infectés est à la hausse ainsi que les préoccupations concernant leur santé. En effet, plusieurs groupes ont signalé une augmentation de la morbidité et de la mortalité chez les enfants exposés non infectés. L’analyse des données rétrospectives de 705 enfants exposés non infectés de la cohorte mère-enfant du CMIS a révélé qu’à 2 mois d’âge, les enfants nés de mères ayant une charge virale supérieure à 1,000 copies d’ARN / ml avaient une fréquence de lymphocytes B significativement plus élevés par rapport aux enfants exposés non infectés nés de mères ayant une charge virale indétectable. L’objectif de cette étude est de caractériser ces anomalies. Les lymphocytes, provenant du sang de cordon ombilical et de sang veineux obtenu à 6 et 12 mois d’âge, ont été phénotypés par cytométrie en flux à l’aide des marqueurs CD3 / CD10 / CD14 / CD16 / CD19 / CD20 / CD21 / CD27 / IgM pour les lymphocytes B et CD4 / CD8 / CD3 / CCR7 / CD45RA pour les lymphocytes T. De plus, afin d’étudier les capacités fonctionnelles des lymphocytes B CD19+, la réponse antigène-spécifique au vaccin antitétanique a été mesurée par marquage avec des tétramères fluorescents de fragment C du toxoïde tétanique. Nos travaux ont mis en évidence des différences statistiquement significatives entre les enfants exposés non-infectés (ENI) nés de mères avec une charge virale détectable comparativement à ceux nés de mères avec une charge virale indétectable. À la naissance, les enfants ENI nés de mères avec une charge virale détectable avaient significativement moins de lymphocytes B totaux, plus de lymphocytes B mémoires classiques, activés, plasmablastes et lymphocytes T CD8+ mémoires centrales. À 6 mois, ils avaient significativement plus de lymphocytes B naïfs et significativement moins de lymphocytes T CD8+ effecteurs mémoires. À 12 mois d’âge, ils avaient significativement plus de lymphocytes B et T CD8+ totaux; significativement moins de lymphocytes T CD4+ totaux et leurs lymphocytes T affichaient un profil significativement plus activé (plus de cellules mémoires). L’analyse de la réponse antigène-spécifique a révélé une fréquence plus élevé de lymphocytes B mémoires IgM+ suggérant que les enfants nés de mères avec une virémie détectable ont plus de mal à établir une mémoire immunitaire efficace face au vaccin antitétanique. Nos données suggèrent qu’il y a exposition durant le premier trimestre de grossesse à la virémie maternelle et que cette exposition impacte le système immunitaire en développement du fœtus. Les mécanismes sous-jacents causant ces anomalies doivent encore être élucidés et l’épuisement du compartiment T à la naissance et à 6 mois reste à être investigué. Dans un pays industrialisé où l’accès aux soins est facilité, ces anomalies ont des conséquences modérées mais dans des pays à faible et moyen revenu, les conséquences peuvent être beaucoup plus tragiques voir fatales.
Resumo:
In situ hybridization histochemistry and immunocytochemistry were used to examine lamina- and cell-specific expression of glutamate receptor (GluR) mRNAs and polypeptide subunits in motor and somatosensory cortex of macaque monkeys. Radioactive complementary RNA (cRNA) probes were prepared from cDNAs specific for α-amino-3-hydroxy-5-methylisoxozolepropionate (AMPA)/kainate (GluR1-GluR4), kainate (GluR5-GluR7), and N-methylD-aspartate (NMDA; NR1, NR2A-NR2D) receptor subunits. AMPA/kainate and NR1, NR2A, and NR2B receptor transcripts show higher expression than other transcripts. All transcripts show lamina-specific patterns of distribution. GluR2 and GluR4 mRNAs show higher expression than do GluR1 and GluR3 mRNAs. GluR6 transcript expression is higher than that of GluR5 and GluR7. NR1 mRNA expression is much higher than that of NR2 mRNAs. NR2C subunit expression is very low except for a very distinct band of high expression in layer IV of area 3b. Immunocytochemistry, using subunit-specific antisera and double labeling for calbindin, parvalbumin, or α type II Ca2+/calmodulin-dependent protein kinase (CaMKII-α), allowed identification of cell types expressing different subunit genes. GluR1 and GluR5/6/7 immunoreactivity is found in both pyramidal cells and gamma-amino butyric acid (GABA) cells; GluR2/3 immunoreactivity is preferentially found in pyramidal cells, whereas GluR4 immunoreactivity is largely restricted to GABA cells; NMDA receptor subunit immunoreactivity is far greater in excitatory cells than in GABA cells. The density of expression of AMPA/kainate, kainate, and NMDA receptor subunit mRNAs differed within and across the architectonic fields of sensory-motor cortex. This finding and the lamina- and cell-specific patterns of expression suggest assembly of functional receptors from different arrangements of available subunits in specific neuronal populations.
Resumo:
Purpose: The diagnosis of prostate cancer in men with persistently increased prostate specific antigen after a negative prostate biopsy has become a great challenge for urologists and pathologists. We analyzed the diagnostic value of 6 genes in the tissue of patients with prostate cancer. Materials and Methods: The study was comprised of 50 patients with localized disease who underwent radical prostatectomy. Gene selection was based on a previous microarray analysis. Among 4,147 genes with different expressions between 2 pools of patients 6 genes (PSMA, TMEFF2, GREB1, TH1L, IgH3 and PGC) were selected. These genes were tested for diagnostic value using the quantitative reverse transcription polymerase chain reaction method. Initially malignant tissue samples from 33 patients were analyzed and in the second part of the study we analyzed benign tissue samples from the other 17 patients with prostate cancer. The control group was comprised of tissue samples of patients with benign prostatic hyperplasia. Results: Analysis of malignant prostatic tissue demonstrated that prostate specific membrane antigen was over expressed (mean 9 times) and pepsinogen C was under expressed (mean 1.3 X 10(-4) times) in all cases compared to benign prostatic hyperplasia. The other 4 tested genes showed a variable expression pattern not allowing for differentiation between benign and malignant cases. When we tested these results in the benign prostate tissues from patients with cancer, pepsinogen C maintained the expression pattern. In terms of prostate specific membrane antigen, despite over expression in most cases (mean 12 times), 2 cases (12%) presented with under expression. Conclusions: Pepsinogen C tissue expression may constitute a powerful adjunctive method to prostate biopsy in the diagnosis of prostate cancer cases.
Resumo:
There are some unusual histologic variants of prostate carcinoma, including mucinous, signet-ring cells, and ductal carcinomas that can metastasize in a problematic way and simulate lung, colorectal, or bladder primaries. Currently, antibodies that are organ-specific have been used in the routine surgical pathology practice. Our aim is to study the profile of expression of Cdx2, thyroid transcription factor 1 (TTF1), and cytokeratin 20 (CK20) in prostate cancer with unusual histologic finding. Twenty-nine prostate adenocarcinomas with unusual histologic findings were submitted to immunohistochemistry with prostate-specific antigen (PSA), CK20, Cdx2, and TTF1 antibodies. There were 7 mucinous, 5 ductal, 2 signet-ring cells, and 15 usual acinar adenocarcinomas with focal mucinous differentiation. To compare the results with usual acinar adenocarcinomas, we studied 10 primary and their respective lymph node metastases in a tissue microarray, 2 unusual metastatic adenocarcinomas, and 6 usual acinar high-grade carcinomas. For tumors with special histologic finding, Cdx2 was expressed by 9 (31.0%) mucinous, signet-cell, or with focal mucinous differentiation. Thyroid transcription factor I was moderately positive in mucinous differentiation areas of 2 (6.9%) adenocarcinomas. Cytokeratin 20 was expressed by 9 (31.0%) tumors, among them, 3 ductal adenocarcinomas. Prostate-specific antigen was positive in 28 (96.6%) cases and negative in I ductal adenocarcinoma. There was only I worrisome ductal adenocarcinoma that was strongly CK20 positive and PSA negative. Almost one third of mucinous prostate carcinomas express Cdx2. Cytokeratin 20 can be positive also in one third of prostate carcinomas, especially the ductal type. Pathologist should be alert when evaluating immumohistochemical profiles of unusual histologic findings of prostate cancer, mostly in distant sites. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective. To study the impact of the neutral endopeptidase (NEP)/neuropeptides (NPs) axis and nuclear factor kappa B (NFκB) as predictors of prostate-specific antigen (PSA) recurrence after radical prostatectomy (RP). Patients and Methods. 70 patients with early-stage PC were treated with RP and their tumor samples were evaluated for expression of NEP, endothelin-1 (ET-1) and NFκB (p65). Time to PSA recurrence was correlated with the examined parameters and combined with preoperative PSA level, Gleason score, pathological TNM (pT) stage, and surgical margin (SM) assessment. Results and Limitations. Membranous expression of NEP (P < 0.001), cytoplasmic ET-1 (P = 0.002), and cytoplasmic NFκB (P < 0.001) were correlated with time to PSA relapse. NEP was associated with ET-1 (P < 0.001) and NFκB (P < 0.001). ET-1 was also correlated with NFκB (P < 0.001). NEP expression (P = 0.017), pT stage (P = 0.013), and SMs (P = 0.036) were independent predictors of time to PSA recurrence. Conclusions. There seems to be a clinical model of NEP/NPs and NFκB pathways interconnection, with their constituents following inverse patterns of expression in accordance with their biological roles and molecular interrelations.
Resumo:
Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions. J. Comp. Neurol. 517:906-924, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Prostate-specific antigen (PSA) is important in tumour detection, monitoring disease progression and tumour recurrence. however, PSA is not a cancerspecific marker as levels can also be elevated in benign prostatic disease. A number of different mRNA transcripts of PSA have also been identified in prostatic tissue, but have not been fully characterized (PSA 424, PSA 525, Schulz transcript). Tissue specimens from transurethral resection of the prostate (TURP) or radical prostatectomy were obtained from 17 men with BPH and 15 men with prostate cancer. Total RNA was extracted, and reverse-transcriptionpolymerase chain reaction (RT-PCR) and Southern analysis carried out using transcript-specific primers and probes to determine which mRNA PSA transcripts were expressed. Real-time PCR was performed to determine transcript levels between the two groups using transcript-specific primers and SYBR green fluorescence. Values obtained were normalized to a standard housekeeping gene, B2-microglobulin. Transcripts amplified by RT-PCR and real-time PCR were confirmed by DNA sequencing. Our results show that the transcripts were present in some, but not all, BPH and cancer samples indicating that they are not specific to either BPH or cancer. Analysis of real-time PCR normalized values using a Student’s t -test, shows that there is a significant difference between the two groups for PSA 424, but not wild-type PSA, PSA 525 or the Schulz transcript. Although a larger cohort of samples is needed to further confirm these results, these findings suggest that mRNA levels of PSA 424 may have some utility as a diagnostic or prognostic marker in prostate cancer detection.
Resumo:
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class lb molecule that acts as a specific immunosuppressor. Some studies have demonstrated that human papillomavirus (HPV) seems to be involved in lower or absent HLA-G expression, particularly in cervical cancer. In this study, we performed a cross-sectional study, systematically comparing the qualitative expression of the HLA-G5 isoform in invasive cervical carcinoma (ICC), stratifying patients according to the presence [ICC with metastasis (ICC(W))) and absence [ICC without metastasis (ICC(WT))] of metastasis, correlating these findings with interference of HPV and demographic and clinical variables. Seventy-nine patients with a diagnosis of ICC were stratified into two groups: ICC(WT) (n=52 patients) and ICC(W) (n=27). Two biopsies were collected from each patient (one from the tumor lesion and one from a lymph node). Immunohistochemistry analyses were performed for the HLA-G5 isoform, for HPV detection, and virus typing. HLA-G5 isoform molecules were detected in 25 cases (31.6%), 17 (32.7%) without metastasis and 8 (29.6%) with metastasis. HPV was detected in the cervical lesions of 74 patients (93.7%), but low expression of the HLA-G5 isoform was observed in all HPV-related cases. These findings are important; however, additional studies are necessary to identify the influence of HPV with HLA-G5 isoform expression on invasive cervical malignancies. (J Histochem Cytochem 58:405-411, 2010)
Resumo:
Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
Cytotoxicity and proliferation capacity are key functions of antiviral CD8 T cells. In the present study, we investigated a series of markers to define these functions in virus-specific CD8 T cells. We provide evidence that there is a lack of coexpression of perforin and CD127 in human CD8 T cells. CD127 expression on virus-specific CD8 T cells correlated positively with proliferation capacity and negatively with perforin expression and cytotoxicity. Influenza virus-, cytomegalovirus-, and Epstein-Barr virus/human immunodeficiency virus type 1-specific CD8 T cells were predominantly composed of CD127(+) perforin(-)/CD127(-) perforin(+), and CD127(-)/perforin(-) CD8 T cells, respectively. CD127(-)/perforin(-) and CD127(-)/perforin(+) cells expressed significantly more PD-1 and CD57, respectively. Consistently, intracellular cytokine (gamma interferon, tumor necrosis factor alpha, and interleukin-2 [IL-2]) responses combined to perforin detection confirmed that virus-specific CD8 T cells were mostly composed of either perforin(+)/IL-2(-) or perforin(-)/IL-2(+) cells. In addition, perforin expression and IL-2 secretion were negatively correlated in virus-specific CD8 T cells (P < 0.01). As previously shown for perforin, changes in antigen exposure modulated also CD127 expression. Based on the above results, proliferating (CD127(+)/IL-2-secreting) and cytotoxic (perforin(+)) CD8 T cells were contained within phenotypically distinct T-cell populations at different stages of activation or differentiation and showed different levels of exhaustion and senescence. Furthermore, the composition of proliferating and cytotoxic CD8 T cells for a given antiviral CD8 T-cell population appeared to be influenced by antigen exposure. These results advance our understanding of the relationship between cytotoxicity, proliferation capacity, the levels of senescence and exhaustion, and antigen exposure of antiviral memory CD8 T cells.