981 resultados para antenna coupled resonator matching sections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 32.1 W laser-diode-stack pumped acoustic-optic Q-switched Nd:YVO4 slab laser with hybrid resonator at 1064 nm was demonstrated with the pumping power of 112 W and repetition rate of 40 kHz, the pulse duration was 32.47 ns. The slope efficiency and optical-to-optical efficiency were 37 and 28.7%, respectively. At the repetition rate of 20 kHz and pumping power of 90 W, the average output power and pulse duration were 20.4 W and 20.43 ns, respectively. With the pumping power of 112 W, the beam quality M-2 factors in CW operation were measured to be 1.3 in stable direction and 1.6 in unstable direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a highly efficient content-lossless compression scheme for Chinese document images. The scheme combines morphologic analysis with pattern matching to cluster patterns. In order to achieve the error maps with minimal error numbers, the morphologic analysis is applied to decomposing and recomposing the Chinese character patterns. In the pattern matching, the criteria are adapted to the characteristics of Chinese characters. Since small-size components sometimes can be inserted into the blank spaces of large-size components, we can achieve small-size pattern library images. Arithmetic coding is applied to the final compression. Our method achieves much better compression performance than most alternative methods, and assures content-lossless reconstruction. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.

A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.

In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.

A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-background applications such as climate monitoring, biology and security applications demand a large dynamic range. Under such conditions ultra-high sensitivity is not required. The resonator bolometer is a novel detector which is well-suited for these conditions. This device takes advantage of the high-density frequency multiplexing capabilities of superconducting microresonators while allowing for the use of high-Tc superconductors in fabrication, which enables a modest (1-4 K) operating temperature and larger dynamic range than is possible with conventional microresonators. The moderate operating temperature and intrinsic multiplexability of this device reduce cost and allow for large pixel counts, making the resonator bolometer especially suitable for the aforementioned applications. A single pixel consists of a superconducting microresonator whose light-absorbing area is placed on a thermally isolated island. Here we present experimental results and theoretical calculations for a prototype resonator bolometer array. Intrinsic device noise and noise equivalent power (NEP) under both dark and illuminated conditions are presented. Under dark conditions the device sensitivity is limited by the thermal noise fluctuations from the bolometer legs. Under the experimental illuminated conditions the device was photon noise limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured inclusive electron-scattering cross sections for targets of ^(4)He, C, Al, Fe, and Au, for kinematics spanning the quasi-elastic peak, with squared, four­ momentum transfers (q^2) between 0.23 and 2.89 (GeV/c)^2. Additional data were measured for Fe with q^2's up to 3.69 (GeV/c)^2 These cross sections were analyzed for the y-scaling behavior expected from a simple, impulse-approximation model, and are found to approach a scaling limit at the highest q^2's. The q^2 approach to scaling is compared with a calculation for infinite nuclear matter, and relationships between the scaling function and nucleon momentum distributions are discussed. Deviations from perfect scaling are used to set limits on possible changes in the size of nucleons inside the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.

We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.

We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sources and effects of astrophysical gravitational radiation are explained briefly to motivate discussion of the Caltech 40 meter antenna, which employs laser interferometry to monitor proper distances between inertial test masses. Practical considerations in construction of the apparatus are described. Redesign of test mass systems has resulted in a reduction of noise from internal mass vibrations by up to two orders of magnitude at some frequencies. A laser frequency stabilization system was developed which corrects the frequency of an argon ion laser to a residual fluctuation level bounded by the spectral density √s_v(f) ≤ 60µHz/√Hz, at fluctuation frequencies near 1.2 kHz. These and other improvements have contributed to reducing the spectral density of equivalent gravitational wave strain noise to √s_h(f)≈10^(-19)/√ Hz at these frequencies.

Finally, observations made with the antenna in February and March of 1987 are described. Kilohertz-band gravitational waves produced by the remnant of the recent supernova are shown to be theoretically unlikely at the strength required for confident detection in this antenna (then operating at poorer sensitivity than that quoted above). A search for periodic waves in the recorded data, comprising Fourier analysis of four 105-second samples of the antenna strain signal, was used to place new upper limits on periodic gravitational radiation at frequencies between 305 Hz and 5 kHz. In particular, continuous waves of any polarization are ruled out above strain amplitudes of 1.2 x 10^(-18) R.M.S. for waves emanating from the direction of the supernova, and 6.2 x 10^(-19) R.M.S. for waves emanating from the galactic center, between 1.5 and 4 kilohertz. Between 305 Hz and 5kHz no strains greater than 1.2 x 10^(-17) R.M.S. were detected from either direction. Limitations of the analysis and potential improvements are discussed, as are prospects for future searches.