968 resultados para ammonium persulfate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric compositions containing Al-Mg alloys show higher reactivities, in comparison with similar compositions containing aluminium. This is observed irrespective of the amount of oxidizer, type of oxidizer used, type of polymeric binder, and over a range of the particle sizes of the metal additive. This is evident from the higher calorimetric values obtained for compositions containing the alloy, in comparison to samples containing aluminium. Analysis of the combustion residue shows the increase in calorimetric value to be due to the greater extent of oxidation of the alloy. The interaction between the polymeric binder and the alloy was studied by coating the metal particles with the polymer by a coacervation technique. On ageing in the presence of ammonium perchlorate, cracking of the polymer coating on the alloy was noticed. This was deduced from differential thermal analysis experiments, and confirmed by scanning electron microscopic observations. The increase in stiffness of the coating, leading to cracking, has been traced to the cross-linking of the polymer by magnesium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new cationic amphiphiles bearing anthraquinone moieties at the polar headgroup region were synthesized, The single-chain amphiphile, N,N-dimethyl-N-octadecyl-N-(9,10-dihydro dioxoanthracen-2-ylmethyl)ammonium bromide 1, in the presence of cetyltrimethylammonium bromide upon dispersion in water gave co-micellar aggregates containing covalently attached anthraquinone residues at the polar aqueous interfaces. The other two double-chain amphiphiles, N,N-dioctadecyl-N-methyl-N-(9,10-dihydro-9,10-dioxoanthracen-2-ylmethyl)ammonium bromide 2 and N,N-dimethyl-N-(1,2-bispalmitoyloxypropanyl)-N-(9,10-dihydro-9,10-dioxanthracen-2-ylmethyl)ammonium bromide 3, however, on dispersion in aqueous media produced vesicular aggregates. The critical temperatures for the gel to liquid-crystalline-like phase transition processes for the vesicular systems were determined by following temperature-dependent changes in the ratios of keto-enol tautomeric forms of benzoylacetanilide doped within respective. vesicular assemblies. The redox chemistry of the these supramolecular assemblies was also studied by following the time-dependent changes in the ITV-VIS absorption spectroscopy in the presence of exogenous reducing or oxidizing agents, Electrochemical studies using glassy carbon electrodes reveal that redox-active amphiphiles adsorb on to the glassy carbon surfaces to form electroactive deposits when dipped into aqueous suspensions of either of these aggregates irrespective of the micellar or vesicular nature of the dispersions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)(3):Eu phase and subsequent heat treatment at 350 and 600 degrees C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)(3):Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)(3):Eu. The strong and intense Raman peak at 489 cm(-1) has been assigned to A(g) mode, which is attributed to the hexagonal phase of Gd2O3. The peak at similar to 360 cm(-1) has been assigned to the combination of F-g and E-g modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different phases of Eu3+ activated gadolinium oxide (Gd (OH)(3), GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (GAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)(3):Eu after calcinations at 350 and 600 degrees C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)(3), lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between D-5(0) and F-7 configurations. Thermoluminescence glow curves of Gd (OH)(3): Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source ((CO)-C-60) in the dose range 10-60 Gy at a heating rate of 6.7 degrees C sec(-1). Well resolved glow peaks in the range 42-45, 67-76,95-103 and 102-125 degrees C were observed. When gamma-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in gamma-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 degrees C and a new shouldered peak at 86 degrees C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat-up times derived from studies on the ignition characteristics of a few model composite solid propellants, containing polystyrene, carboxy-terminated polybutadiene, plasticised polyvinyl chloride and polyphenol formaldehyde as binders, show that they are directly proportional to the mass of the sample and inversely proportional to the hear flux. Propellant weight-loss prior to ignition and high pressure ignition temperature data on the propellants, ammonium per chlorate, and binders show that the ignition is governed by the gasification of the binder pyrolysis products. The activation energy for the gasification of the pyrolysed polymer products corresponds to their ignition behaviour suggesting that propellant ignition is controlled by the binder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to elucidate the role of the linkage region that connects polar headgroups with hydrophobic segments in a lipid monomer, cationic mixed-chain amphiphiles containing acyl and alkyl hydrophobic segments connected at the level of Me(2)N(+) headgroups 2a-d were synthesized. Related dialkyldimethyl-ammonium ion surfactants 1a-e and diacyl systems 3a-c were also synthesized. Despite mismatch in the connector region, amphiphiles 2a-d form bilayer vesicles like their dialkyl and diacyl counterparts, as revealed by electron microscopy. Introduction of an ester connector function between the polar and hydrophobic parts raises the phase transition temperature (T-m), transition enthalpies, and resistance to ion permeation. Consideration of energy minimized conformations points toward the importance of differences in the depth of chain penetration into the putative bilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyridinium hexafluorotitanate, (C5H5NH)(2)TiF6, has been prepared by the reaction of titanium metal with pyridinium poly(hydrogen fluoride), PPHF, at room temperature. Making use of (C5H5NH)(2)TiF6 as a precursor, ammonium and alkali metal hexafluorotitanates, M(2)TiF(6) (M = NH4, Na, K, Rb and Cs) have been synthesized by metathesis. These hexafluorotitanates have been characterized by chemical analyses, infrared and NMR (H-1 and F-19) spectroscopy and powder X-ray diffraction methods. Indexed powder X-ray diffraction data for Rb2TiF6 and Cs2TiF6 have been reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nitrate assimilation pathway in Candida utilis, as in other assimilatory organisms, is mediated by two enzymes: nitrate reductase and nitrite reductase. Purified nitrite reductase has been shown to be a heterodimer consisting of 58- and 66-kDa subunits. In the present study, nitrite reductase was found to be capable of utilising both NADH and NADPH as electron donors. FAD, which is an essential coenzyme, stabilised the enzyme during the purification process. The enzyme was modified by cysteine modifiers, and the inactivation could be reversed by thiol reagents. One cysteine was demonstrated to be essential for the enzymatic activity. In vitro, the enzyme was inactivated by ammonium salts, the end product of the path way, proving that the enzyme is assimilatory in function. In vivo, the enzyme was induced by nitrate and repressed by ammonium ions. During induction and repression, the levels of nitrite reductase mRNA, protein, and enzyme activity were modulated together, which indicated that the primary level of regulation of this enzyme was at the transcriptional level. When the enzyme was incubated with ammonium salts in vitro or when the enzyme was assayed in cells grown with the same salts as the source of nitrogen, the residual enzymatic activities were similar. Thus, a study of the in vitro inactivation can give a clue to understanding the mechanism of in vivo regulation of nitrite reductase in Candida utilis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The layered chalcogenides, having structures analogous to graphite, are known to be unstable toward bending and show high propensity to form curved structures, thus eliminating dangling bonds at the edges. Since the discovery of fullerene and nanotube structures of WS2 and MoS2 by Tenne et al. [1-3], there have been attempts to prepare and characterize nanotubes of other layered dichalcogenides with structures analogous to MoS2. Nanotubes of MoS2 and WS2 were prepared by Tenne et al. by reducing the corresponding oxides to the suboxides followed by heating in an atmosphere of forming gas (5 % H-2 + 95 % N-2) and H2S at 700-900 degreesC [1-3]. Alternative methods of synthesis of MoS2 and WS2 nanotubes have since been proposed by employing the decomposition of the ammonium thiometallates or the corresponding trisulfide precursors. This alternative procedure was based on the observation that the trisulfide seems to be formed as an intermediate in the synthesis of the MoS2 and WS2 nanotubes [4]. Accordingly, the decomposition of the trisulfides of MoS2 and W in a reducing atmosphere directly yielded nanotubes of the disulfides MoS2 and WS2 [5]. In this article, we describe the synthesis, structure, and characterization of a few novel nanotubes of the disulfides of groups 4 and 5 metals. These include nanotubes of NbS2, TaS2, ZrS2, and HfS2. The study enlarges the scope of the inorganic nanotubes significantly and promises other interesting possibilities, including the synthesis of the diselenide nanotubes of these metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports reacting fluid dynamics calculations for an ammonium percholrate binder sandwich and extracts experimentally observed features including surface profiles and maximum regression rates as a function of pressure and binder thickness. These studies have been carried out by solving the two-dimensional unsteady Navier-Stokes equations with energy and species conservation equations and a kinetic model of three reaction steps (ammonium perchlorate decomposition flame, primary diffusion flame, and final diffusion flame) in the gas phase. The unsteady two-dimensional conduction equation is solved in the condensed phase. The regressing surface is unsteady and two dimensional. Computations have been carried out for a binder thickness range of 25-125 mum and a pressure range of 1.4 to 6.9 MPa. Good comparisons at several levels of detail are used to demonstrate the need for condensed-phase two-dimensional unsteady conduction and three-step gas-phase reactions. The choice of kinetic and thermodynamic parameters is crucial to good comparison with experiments. The choice of activation energy parameters for ammonium percholrate combustion has been made with stability of combustion in addition to experimentally determined values reported in literature. The choice of gas-phase parameters for the diffusion flames are made considering that (a) primary diffusion flame affects the low-pressure behavior and (b) final diffusion flame affects high-pressure behavior. The predictions include the low-pressure deflagration limit of the sandwich apart from others noted above. Finally, this study demonstrates the possibility of making meaningful comparisons with experimental observations on sandwich propellant combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid, propellants are widely used in modern rockets and missiles. Although the history of solid rockets could be traced to the discovery of gunpowder over a thousand years ago, the technology could be perfected only by the later half of the 20(th) century. The failure of gunpowder rockets was largely due to the unknown consolidating technique of the powder composition. The emergence of large solid propellant motors had, to await the dawn of polymer. science and technology(S&T). Specific syntheses of functionally terminated polymers having cross-linking capability led to the emergence of casting technology of solid composite propellants. This review describes the various polymeric fuel/binder systems used or considered for use in solid,propellants. It includes a brief background, advantages, and shortcomings of the various systems, an account of the currently used binders and a critical survey of the advanced polymers envisaged for future usage. Special emphasis has been laid on recently synthesized polymers having N-N bonds in their structures, and-on the feasibility of developing smokeless propellants based on ammonium nitrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Praseodymium-doped ceria red pigments, Ce1−xPrxO2−δ, x=0–0.5 have been prepared by the thermal decomposition of the redox compound Ce1−xPrx(N2H3COO)3·3H2O as well as by the combustion of aqueous solutions containing cerous nitrate, praseodymium nitrate and oxalyl dihydrazide (ODH)/ammonium acetate. Formation of the pigment has been confirmed by its characteristic red colour and reflectance spectra which shows the reflection edge not, vert, similar690 nm corresponding to charge transfer from the ligand orbitals to the localised 4f1 of Pr4+. The particulate properties of praseodymium-doped ceria pigments obtained from the combustion of redox compounds and redox mixtures are compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single perovskite slab alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4, n = 12, 16, 18, display two phase transitions, just above room temperature, associated with changes in the alkylammonium chains. We have followed these two phase transitions using scanning calorimetry, X-ray powder diffraction, and IR and Raman spectroscopies. We find the first phase transition to be associated with symmetry changes arising from a dynamic rotational disordering of the ammonium headgroup of the chain whereas the second transition, the melting of the chains in two dimensions, is characterized by an increased conformational disorder of the methylene units of the alkyl chains. We examine these phase transitions in light of the interesting optical properties of these materials, as well as the relevance of these systems as models for phase transitions in lipid bilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wet chemical route is developed for the preparation of Sr2CeO4 denoted the carbonate-gel composite technique. This involves the coprecipitation of strontium as fine particles of carbonates within hydrated gels of ceria (CeO2.xH(2)O, 40ammonium carbonate. During calcination, CeO2.xH(2)O dehydroxylation is followed by the reaction with SrCO3 to form Sr2CeO4 with complete phase purity. Doping of other rare-earths is carried out at the co-precipitation stage. The photoluminescence (PL) observed for Sr2CeO4 originates from the Ce4+-O2- charge-transfer (CT) transition resulting from the interaction of Ce4+ ion with the neighboring oxide ions. The effect of next-nearest-neighbor (NNN) environment on the Ce4+-O2- CT emission is studied by doping with Eu3+, Sm3+ or Yb3+ which in turn, have unique charge-transfer associated energy levels in the excited states in oxides. Efficient energy transfer occurs from Ce4+-O2- CT state to trivalent lanthanide ions (Ln(3+)) if the latter has CT excited states, leading to sensitizer-activator relation, through non-resonance process involving exchange interaction. Yb3+-substituted Sr2CeO4 does not show any line emission because the energy of Yb3+-O2- CT level is higher than that of the Ce4+-O2- CT level. Sr2-xEuxCeO4+x/2 shows white emission at xless than or equal to0.02 because of the dominant intensities of D-5(2)-F-7(0-3) transitions in blue-green region whereas the intensities of D-5(0)-F-7(0-3) transitions in orange-red regions dominate at concentrations xgreater than or equal to0.03 and give red emission. The appearance of all the emissions from D-5(2), D-5(1) and D-5(0) excited states to the F-7(0-3) ground multiplets of Eu3+ is explained on the basis of the shift from the hypersensitive electric-dipole to magnetic-dipole related transitions with the variation in site symmetry with increasing concentration of Eu3+. White emission of Sr2-x SmxCeO4+x/2 at xless than or equal to0.02 is due the co-existence of Ce4+-O2- CT emission and (4)G(4)(5/2)-H-6(J) Sm3+ transitions whereas only the Sm3+ red emission prevails for xgreater than or equal to0.03. The above unique changes in PL emission features are explained in terms of the changes in NNN environments of Ce4+. Quenching of Ce4+-O2- CT emission by other Ln(3+) is due to the ground state crossover arising out of the NNN interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified a methanol- and biotin-starvation-inducible zinc finger protein named ROP [repressor of phosphoenolpyruvate carboxykinase (PEPCK)] in the methylotrophic yeast Pichia pastoris. When P. pastoris strain GS115 (wild-type, WT) is cultured in biotin-deficient, glucose-ammonium (Bio(-)) medium, growth is suppressed due to the inhibition of anaplerotic synthesis of oxaloacetate, catalysed by the biotin-dependent enzyme pyruvate carboxylase (PC). Deletion of ROP results in a strain (Delta ROP) that can grow under biotin-deficient conditions due to derepression of a biotin- and PC-independent pathway of anaplerotic synthesis of oxaloacetate. Northern analysis as well as microarray expression profiling of RNA isolated from WT and Delta ROP strains cultured in Bio(-) medium indicate that expression of the phosphoenolpyruvate carboxykinase gene (PEPCK) is induced in Delta ROP during biotin- or PC-deficiency even under glucose-abundant conditions. There is an excellent correlation between PEPCK expression and growth of Delta ROP in Bio(-) medium, suggesting that ROP-mediated regulation of PEPCK may have a crucial role in the biotin- and PC-independent growth of the Delta ROP strain. To our knowledge, ROP is the first example of a zinc finger transcription factor involved in the catabolite repression of PEPCK in yeast cells cultured under biotin- or PC-deficient and glucose-abundant conditions.