966 resultados para alzheimer disease
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.
Resumo:
Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.
Resumo:
Els criteris per al diagnòstic clínic de la malaltia d’Alzheimer es van establir el 1984 pel National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) i la Alzheimer’s Disease and Related Disorders Association (ADRDA). D’aplicació continuada fins a l’actualitat, aquests criteris estan quedant obsolets i per tant des de diversos àmbits s’ha abogat per una revisió profunda dels mateixos. Tres grups d’experts formats per reconeguts especialistes del National Institute on Aging (NIA) i la Alzheimer’s Association proposen un conjunt de recomanacions per modificar aquests criteris en l’àmbit de la investigació clínica. Dues diferències remarcables s’inclouen en aquests nous criteris: la incorporació de biomarcadors i la formalització de diferents estadis de la malaltia d’Alzheimer. D’aquesta manera, el deteriorament cognitiu lleu s’incorpora al procés diagnòstic com un estadi més de la patologia. Tanmateix, aquests criteris es troben en revisió i, de moment sols son aplicables en l’àmbit de recerca per tal d’arribar a un consens definitiu que permeti la modificació definitiva dels criteris clínics universals a aplicar. En aquest article es presenten els principals avenços en la investigació referents a la malaltia d’Alzheimer i al Deteriorament Cognitiu lleu per tal d’emmarcar els nous criteris de recerca.
Resumo:
Introduction : Doublecortin (DCX) is a microtubule associated protein expressed by migrating neural precursors. DCX is also expressed in approximately 4% of all cortical cells in adult normal primate brain. DCX expression is also enhanced locally in response to an acute insult made to the brain. This is thought to play a role in plasticity or neural repair. That being said, it would be interesting to know how the expression of DCX is modified in a more chronic insult, like in neurodegeneration such as in Parkinson's Disease (PD) and Alzheimer's Disease (AD). The aim of my study is to study the expression of DCX cells in the cortex of patients having a neurodegenerative disease, compared to control patients. Method: DCX cells quantification on 9 DCX‐stained 5 μm thick formalin fixed paraffin embedded brain sections: 3 Alzheimer's disease patients, 3 Parkinson's disease patients and 3 control patients. Each patient had several sections that we could stain with different stainings (GALLYA, TAU, DCX). By using a computerized image analysis system (Explora Nova, La Rochelle, France), cortical columns were selected on areas on the cortex with a lot of degeneration subjectively observed on GALLYA stained sections and on TAU stained sections. Then total number of cells was counted on TAU sections, where all nuclei were colored in blue. Then the DCX cells were counted on the corresponding DCX sections. These values were standardized to a reference surface area. The ratio of DCX cells over total cells was then calculated. Results : There is a difference of DCX cell expression between Alzheimer's Disease patients and control patients. The percentage of dcx cells in the cortex of an Alzheimer's patient is around 12.54% ± 2.17%, where as in the cortex of control patients, it is around 5.47% ± 0.83%. On the other hand, there is no significant difference in the ratio of DCX cells over total cells between parkinson's patients and control patients, both having around 5% of DCX cells. Discussion: There is a dramatic increase of DCX expression in AD (12.5%) compared to PD and controls (5.5%). The increase in DCX ratio in AD may have two potential causes: 1.The increased ratio is due to DCX cells being more resistant to degeneration compared to surrounding cells which are degenerating due to AD, leading to the cortical atrophy observed in AD patients. So the decrease of total cells without any change in the number of DCX cells makes the ratio bigger in AD compared to the controls. 2.The increased ratio is due to an actual increase in DCX cells. This means that there is some neural repair to compensate the degenerative process, just like the repair process observed in acute lesions to the brain. This second idea can be integrated in the broader point of view of neuroinflammation. The progression of the disease would trigger neuroinflammation and the process following the primary inflammatory response which is neural repair. So our study can show that the increase in DCX cells is an attempt to repair the degenerated neurons, in the context of neuroinflammation triggered by the physiopathological progression of the disease.
Resumo:
Frontotemporal dementia (FTD) is the second most common degenerative dementia after Alzheimer's disease and its Lewy body variant. Clinical pathology can be subdivided in three main neuropathological subtypes: frontal lobe dementia, Pick's disease and FTD with motor neuron disease (MND), all characterised by distinct histological features. Until recently the presence of ubiquitin-positive intraneuronal inclusions in the dentate gyrus, and the temporal and frontal cortex was usually associated with the MND type. Such inclusions were also observed in a few sporadic cases of FTD without or with parkinsonism (FTDP) in the absence of MND. We present here clinical, neuropathological and immunohistochemical data about a Swiss FTD family with FTDP-like features but without MND. Spongiosis and mild gliosis were observed in the grey matter. No neurofibrillary tangles, Pick bodies, Lewy bodies, senile plaques or prion-positive signals were present. However, ubiquitin-positive intracytoplasmic inclusions were detected in various structures but predominantly in the dentate gyrus. These observations support the existence of a familial form of FTDP with ubiquitin-positive intracytoplasmic inclusions (Swiss FTDP family).
Resumo:
Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.
Resumo:
La recerca indica que la plasticitat del cervell té un doble vessant: és bàsica per a la intel·ligència humana, però també té efectes col·laterals, com la possible demència
Resumo:
El presente artículo hace un repaso de los principales estudios respecto a los factores de riesgo para la enfermedad de Alzheimer, priorizando los factores psicosociales y especialmente los que se refieren a la personalidad premórbida. Entre los factores psicosociales de riesgo, aparecen como los más destacados un bajo nivel educativo y una actividad-relación social restringida. Necesidad de protección, tutelaje y dependencia de otras personas, relación social e interpersonal restringida e introversión, son los elementos de riesgo más relevantes para la personalidad premórbida. Los factores que aparecen en los estudios mencionados tienen relación con la hipótesis de trabajo de la investigación que se desarrolla actualmente, acerca de los perfiles de riesgo en la personalidad premórbida. Esta hipótesis los sitúa en el campo de lo emocional y de la relación interpersonal: fragilidad de la identidad personal y sostenimiento del yo a través de una relación simbiótica con el otro.
Resumo:
The β site APP cleaving enzyme 1 (BACE1) is the rate-limiting β-secretase enzyme in the amyloidogenic processing of APP and Aβ formation, and therefore it has a prominent role in Alzheimer"s disease (AD) pathology. Recent evidence suggests that the prion protein (PrP) interacts directly with BACE1 regulating its β-secretase activity. Moreover, PrP has been proposed as the cellular receptor involved in the impairment of synaptic plasticity and toxicity caused by Aβ oligomers. Provided that common pathophysiologic mechanisms are shared by Alzheimer"s and Creutzfeldt-Jakob (CJD) diseases, we investigated for the first time to the best of our knowledge a possible association of a common synonymous BACE1 polymorphism (rs638405) with sporadic CJD (sCJD). Our results indicate that BACE1 C-allele is associated with an increased risk for developing sCJD, mainly in PRNP M129M homozygous subjects with early onset. These results extend the very short list of genes (other than PRNP) involved in the development of human prion diseases; and support the notion that similar to AD, in sCJD several loci may contribute with modest overall effects to disease risk. These findings underscore the interplay in both pathologies of APP, Aβ oligomers, ApoE, PrP and BACE1, and suggest that aging and perhaps vascular risk factors may modulate disease pathologies in part through these key players
Resumo:
Several clinical studies have reported that EEG synchrony is affected by Alzheimer’s disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann–Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.
Resumo:
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center.
Resumo:
Does Independent Component Analysis (ICA) denature EEG signals? We applied ICA to two groups of subjects (mild Alzheimer patients and control subjects). The aim of this study was to examine whether or not the ICA method can reduce both group di®erences and within-subject variability. We found that ICA diminished Leave-One- Out root mean square error (RMSE) of validation (from 0.32 to 0.28), indicative of the reduction of group di®erence. More interestingly, ICA reduced the inter-subject variability within each group (¾ = 2:54 in the ± range before ICA, ¾ = 1:56 after, Bartlett p = 0.046 after Bonfer- roni correction). Additionally, we present a method to limit the impact of human error (' 13:8%, with 75.6% inter-cleaner agreement) during ICA cleaning, and reduce human bias. These ¯ndings suggests the novel usefulness of ICA in clinical EEG in Alzheimer's disease for reduction of subject variability.
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.