940 resultados para allograft inflammatory factor 1
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
We integrate upper Eocene-lower Oligocene lithostratigraphic, magnetostratigraphic, biostratigraphic, stable isotopic, benthic foraminiferal faunal, downhole log, and sequence stratigraphic studies from the Alabama St. Stephens Quarry (SSQ) core hole, linking global ice volume, sea level, and temperature changes through the greenhouse to icehouse transition of the Cenozoic. We show that the SSQ succession is dissected by hiatuses associated with sequence boundaries. Three previously reported sequence boundaries are well dated here: North Twistwood Creek-Cocoa (35.4-35.9 Ma), Mint Spring-Red Bluff (33.0 Ma), and Bucatunna-Chickasawhay (the mid-Oligocene fall, ca. 30.2 Ma). In addition, we document three previously undetected or controversial sequences: mid-Pachuta (33.9-35.0 Ma), Shubuta-Bumpnose (lowermost Oligocene, ca. 33.6 Ma), and Byram-Glendon (30.5-31.7 Ma). An ~0.9 per mil d18O increase in the SSQ core hole is correlated to the global earliest Oligocene (Oi1) event using magnetobiostratigraphy; this increase is associated with the Shubuta-Bumpnose contact, an erosional surface, and a biofacies shift in the core hole, providing a first-order correlation between ice growth and a sequence boundary that indicates a sea-level fall. The d18O increase is associated with a eustatic fall of ~55 m, indicating that ~0.4 per mil of the increase at Oi1 time was due to temperature. Maximum d18O values of Oi1 occur above the sequence boundary, requiring that deposition resumed during the lowest eustatic lowstand. A precursor d18O increase of 0.5 per mil (33.8 Ma, midchron C13r) at SSQ correlates with a 0.5 per mil increase in the deep Pacific Ocean; the lack of evidence for a sea-level change with the precursor suggests that this was primarily a cooling event, not an ice-volume event. Eocene-Oligocene shelf water temperatures of ~17-19 °C at SSQ are similar to modern values for 100 m water depth in this region. Our study establishes the relationships among ice volume, d18O, and sequences: a latest Eocene cooling event was followed by an earliest Oligocene ice volume and cooling event that lowered sea level and formed a sequence boundary during the early stages of eustatic fall.
Resumo:
Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.
Resumo:
A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.
Resumo:
High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (d13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.
Resumo:
Studies were carried out mostly in the area of RMS Titanic wreck site (41°44'N, 49°57'W) located above the continental slope and the south of the Grand Banks of Newfoundland. In a period from 18.06 to 24.09.2001 five surveys of production characteristics of surface phytoplankton were conducted over 5-9 days. Mean values of these characteristics obtained during the surveys were 9.2-11.7 mg C/m**3 per day for primary production (C_phs), 0.102-0.188 mg/m**3 for chlorophyll a (C_chls), and 4.44-7.42 mg C/mg chl. a per hour for assimilation number (AN). The main reason for low C_phs variability was a significant inverse relationship (R=-0.66) between AN and C_chls found over the research area. When cold shelf waters dominated in the area (27.07 to 19.08.2001), C_chls values for the slope region (0.125+/-0.031 µg/l) and for the outer shelf (0.130+/-0.040 µg/l) were similar. During strengthening of influence of warmer slope waters within area (from 29.08 to 13.09.2001), C_chls concentration within surface waters of the outer shelf was 0.152+/-0.039 µg/l and exceeded one for the slope region (0.094+/-0.004 µg/l) by factor 1.6. Against the background of low Cchls values, the High values of integral primary production in the water column (510-1010 mg C/m**2 per day) at low C_chls values measured within the area were determined both by high assimilation activity of phytoplankton and by the deep (30-40 m) maximum of primary production. Main reasons for formation of such a maximum were high chlorophyll concentration within the layer of the deep chlorophyll maximum (up to 0.5-2.5 µg/l) and in the relatively high solar irradiance within this layer varying from 1.4 to 8.6% of subsurface PAR.
Resumo:
The distribution of paragenetic assemblages of trace and rare elements, as revealed by factor analysis (R-mode, Q-mode), the ratios of elements to Zr and the interpretation of these data in the context of the known mineralogy, lithology, and geology of the region, provide the bases for the outline of the geochemical history of sedimentation in the study area that forms the subject of this chapter. Two stages may be discerned. 1. Late-Middle Jurassic-Early Cretaceous (160-106? Ma). The sediments that accumulated in relatively shallow water (shelf) were predominantly clay, with dispersed sapropelic organic matter, plant fragments, pyrite, admixtures of acid-medium volcanic glass, and epigenetic crystals of gypsum. The bottom water layers of the basin are notably stagnant. The sediments are characterized by higher amounts of V, Zn, Cu, Cr, Rb, and Be associated with organic matter. Lower Cretaceous sediments, separated from those of the Upper Jurassic by a hiatus, accumulated in a deepened and enlarging basin. These Lower Cretaceous deposits are chemically similar to those of the Upper Jurassic, but contain diagenetic concentrations of Zn, Ni, and La. 2. Early-middle Albian (Unit 5)-middle Maestrichtian (1067-66.6Ma). The prevailing regime was that of an open ocean basin that tended to expand and deepen. During the second half of the early-middle Albian, the biogenic components Ba, Sr, and CaCO3 accumulated. By the end of this interval, Ti/Zr values had increased. In conjunction data on mineral composition, they testify to an outburst of basaltoid volcanism related to tectonic activity before an erosional hiatus (late Albian-Cenomanian). At the end of the Cenomanian-Turonian, residual deposits of predominantly clay sediments with relatively high amounts of Ti and Zr and associated rare alkalis (Li, Rb) accumulated. Clay sediments deposited during the Coniacian-Santonian were characterized by higher concentrations of Ti, Zr, Li, and Rb, by diagenetic carbonate phases of Ni, Zn, and La, and by sulphides and Fe-oxides with an admixture of Ni and Co. The latter half of the interval saw the deposition of fine basaltoid volcanoclastic material, diagenetically altered by zeolitization and carbonatization and enriched with Se, Pb, Ti, Sr, Ba, Y, and Yb. Sediments with a similar chemistry accumulated in the Campanian-middle Maestrichtian. Strong current activity preceding a global hiatus at the Mesozoic/Cenozoic boundary is reflected in both lower sedimentation rates and the presence of higher residual concentrations of Ti, Zr, Ba, Sr, and other elements studied in this chapter.
Resumo:
Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.
Resumo:
The distribution, biomass, and diversity of living (Rose Bengal stained) deep-sea benthic foraminifera (>30 µm) were investigated with multicorer samples from seven stations in the Arabian Sea during the intermonsoonal periods in March and in September/October, 1995. Water depths of the stations ranged between 1916 and 4425 m. The distribution of benthic foraminifera was compared with dissolved oxygen, % organic carbon, % calcium carbonate, ammonium, % silica, chloroplastic pigment equivalents, sand content, pore water content of the sediment, and organic carbon flux to explain the foraminiferal patterns and depositional environments. A total of six species-communities comprising 178 living species were identified by principal component analysis. The seasonal comparison shows that at the western stations foraminiferal abundance and biomass were higher during the Spring Intermonsoon than during the Fall Intermonsoon. The regional comparison indicates a distinct gradient in abundance, biomass, and diversity from west to east, and for biomass from north to south. Highest values are recorded in the western part of the Arabian Sea, where the influence of coastal and offshore upwelling are responsible for high carbon fluxes. Estimated total biomass of living benthic foraminifera integrated for the upper 5 cm of the sediment ranged between 11 mg Corg m**-2 at the southern station and 420 mg Corg m**-2 at the western station. Foraminifera in the size range from 30 to 125 ?m, the so-called microforaminifera, contributed between 20 and 65% to the abundance, but only 3% to 28% to the biomass of the fauna. Highest values were found in the central and southern Arabian Sea, indicating their importance in oligotrophic deep-sea areas. The overall abundance of benthic foraminifera is positively correlated with oxygen content and pore volume, and partly with carbon content and chloroplastic pigment equivalents of the sediment. The distributional patterns of the communities seem to be controlled by sand fraction, dissolved oxygen, calcium carbonate and organic carbon content of the sediment, but the critical variables are of different significance for each community.