987 resultados para air transport


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In European countries and North America, people spend 80 to 90% of time inside buildings and thus breathe indoor air. In Switzerland, special attention has been devoted to the 16 stations of the national network of observation of atmospheric pollutants (NABEL). The results indicate a reduction in outdoor pollution over the last ten years. With such a decrease in pollution over these ten years the question becomes: how can we explain an increase of diseases? Indoor pollution can be the cause. Indoor contaminants that may create indoor air quality (IAQ) problems come from a variety of sources. These can include inadequate ventilation, temperature and humidity dysfunction, and volatile organic compounds (VOCs). The health effects from these contaminants are varied and can range from discomfort, irritation and respiratory diseases to cancer. Among such contaminants, environmental tobacco smoke (ETS) could be considered the most important in terms of both health effects and engineering controls of ventilation. To perform indoor pollution monitoring, several selected ETS tracers can be used including carbon monoxide (CO), carbon dioxide (CO2), respirable particles (RSP), condensate, nicotine, polycyclic aromatic hydrocarbons (PAHs), nitrosamines, etc. In this paper, some examples are presented of IAQ problems that have occurred following the renewal of buildings and energy saving concerns. Using industrial hygiene sampling techniques and focussing on selected priority pollutants used as tracers, various problems have been identified and solutions proposed. [Author]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants, roots acquire water and soil nutrients and transport them upward to their aerial parts. These functions are closely related to their anatomical structure; water and nutrients entering the root first move radially through several concentric layers of the epidermis, cortex, and endodermis before entering the central cylinder. The endodermis is the innermost cortical cell layer that features rings of hydrophobic cell wall material called the Casparian strips, which functionally resemble tight junctions in animal epithelia. Nutrient uptake from the soil can occur through three different routes that can be interconnected in various ways: the apoplastic route (through the cell wall), the symplastic route (through cellular connections), and a coupled trans-cellular route (involving polarized influx and efflux carriers). This Update presents recent advances in the radial transport of nutrients highlighting the coupled trans-cellular pathway and the roles played by the endodermis as a barrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an approach to determining the speed of wave-front solutions to reaction-transport processes. This method is more accurate than previous ones. This is explicitly shown for several cases of practical interest: (i) the anomalous diffusion reaction, (ii) reaction diffusion in an advective field, and (iii) time-delayed reaction diffusion. There is good agreement with the results of numerical simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly amiloride-sensitive epithelial sodium channel (ENaC) is an apical membrane constituent of cells of many salt-absorbing epithelia. In the kidney, the functional relevance of ENaC expression has been well established. ENaC mediates the aldosterone-dependent sodium reabsorption in the distal nephron and is involved in the regulation of blood pressure. Mutations in genes encoding ENaC subunits are causative for two human inherited diseases: Liddle's syndrome, a severe form of hypertension associated with ENaC hyperfunction, and pseudohypoaldosteronism (PHA-1), a salt-wasting syndrome caused by decreased ENaC function. Transgenic mouse technologies provide a useful tool to study the role of ENaC in vivo. Different mouse lines have been established in which each of the ENaC subunits was affected. The phenotypes observed in these mice demonstrated that each subunit is essential for survival and for regulation of sodium transport in kidney and colon. Moreover, the alpha subunit plays a specific role in the control of fluid absorption in the airways at birth. Such mice can now be used to study the role of ENaC in various organs and can serve as models to understand the pathophysiology of these human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maize (Zea mays L. cv LG 11) root homogenate was prepared and centrifuged to sediment the mitochondria. The pellet (6 KP) and the supernatant (6 KS) were collected and fractionated on linear sucrose density gradients. Marker enzymes were used to study the distribution of the different cell membranes in the gradients. The distribution of the ATP- and pyrophosphate-dependent proton pumping activities was similar after 3 hours of centrifugation of the 6 KS or the 6 KP fraction. The pumps were clearly separated from the mitochondrial marker cytochrome c oxidase and the plasmalemma marker UDP-glucose-sterolglucosyl-transferase. The pyrophosphate-dependent proton pump might be associated with the tonoplast, as the ATP-dependent pump, despite the lack of a specific marker for this membrane. However, under all the conditions tested, the two pumps overlapped the Golgi markers latent UDPase and glucan synthase I and the ER marker NADH-cytochrome c reductase. It is therefore not possible to exclude the presence of proton pumping activities on the Golgi or the ER of maize root cells. The two pumps (but especially the pyrophosphate-dependent one) were more active (or more abundant) in the tip than in the basal part of maize roots, indicating that these activities might be important in growth processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Paul Drude Institut für Festkörperelektronik of the Stanford University, USA, from 2010 to 2012. The objective of this project is the transport and control of electronic charge and spin along GaAs-based semiconductor heterostructures. The electronic transport has been achieved by taking advantage of the piezolectric field induced by surface acoustic waves in non-centrosymmetric materials like GaAs. This piezolectric field separates photogenerated electrons and holes at different positions along the acoustic wave, where they acummulate and are transported at the same velocity as the wave. Two different kinds of structures have been studied: quantum wells grown along the (110) direction, both intrinsic and n-doped, as well as GaAs nanowires. The analysis of the charge acoustic transport was performed by micro-photoluminescence, whereas the detection of the spin transport was done either by analyzing the polarization state of the emitted photoluminescence or by Kerr reflectometry. Our results in GaAs quantum wells show that charge and spin transport is clearly observed at the non-doped structures,obtaining spin lifetimes of the order of several nanoseconds, whereas no acoutically induced spin transport was detected for the n-doped quantum wells. In the GaAs nanowires, we were able of transporting successfully both electrons and holes along the nanowire axis, but no conservation of the spin polarization has been observed until now. The photoluminescence emitted by these structures after acoustic transport, however, shows anti-bunching characteristics, making this system a very good candidate for its use as single photon emitters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaque hiver en France, la grippe saisonnière touche entre 2 et 7 millions de personnes, dont environ 1 000 cas mortels, surtout parmi les personnes de plus de 65 ans. Elle constitue ainsi la première cause de mortalité par maladie infectieuse. L'agent causal est un virus à ARN très contagieux, pouvant appartenir à différent type (A, B ou C). Le type A est composé d'une large gamme de sous-types classés selon les différentes sortes et associations de protéines de surface du virus. Parmi ceux-ci, les sous-types H1N1 et H3N2 circulent actuellement chez l'Homme. La transmission inter-humaine de la maladie se fait principalement par voie aéroportée par le biais des gouttelettes riches en virus provenant des accès de toux et des éternuements des sujets infectés. Le coût sanitaire et social annuel de la grippe est estimé à 460 millions d'euros pour une épidémie moyenne. La prévention de la grippe repose sur une vaccination annuelle, proposée dans la plupart des pays industrialisés aux personnes à risque. Cependant, la couverture vaccinale en France n'était que de 23 % de la population générale en 2011-2012 (62 % chez les plus de 50 ans). Dès lors, environ 80 % des individus sont susceptibles de contracter la maladie. Les transports en commun constituent des environnements idéaux pour la dissémination des virus. En effet, la grande promiscuité entre les passagers potentiellement malades et les passagers sains favorise la propagation de la maladie. Dans ces conditions, l'évaluation du risque d'infection est utile pour appliquer une prévention ciblée. Le but du premier article analysé (Gupta et al., 2012) était, précisément, d'évaluer le risque, pour un passager sain, de contracter le virus de la grippe dans un avion transportant un passager malade. Les auteurs du second article analysé (Pyankov et al., 2012) ont estimé le temps de survie de différents sous-types de virus de la grippe dans l'air ambiant d'une chambre expérimentale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.