960 resultados para Yeast Ras


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the biological and medical importance of signal transduction via Ras proteins and despite considerable kinetic and structural studies of wild-type and mutant Ras proteins, the mechanism of Ras-catalyzed GTP hydrolysis remains controversial. We take a different approach to this problem: the uncatalyzed hydrolysis of GTP is analyzed, and the understanding derived is applied to the Ras-catalyzed reaction. Evaluation of previous mechanistic proposals from this chemical perspective suggests that proton abstraction from the attacking water by a general base and stabilization of charge development on the gamma-phosphoryl oxygen atoms would not be catalytic. Rather, this analysis focuses attention on the GDP leaving group, including the beta-gamma bridge oxygen of GTP, the atom that undergoes the largest change in charge in going from the ground state to the transition state. This leads to a new catalytic proposal in which a hydrogen bond from the backbone amide of Gly-13 to this bridge oxygen is strengthened in the transition state relative to the ground state, within an active site that provides a template complementary to the transition state. Strengthened transition state interactions of the active site lysine, Lys-16, with the beta-nonbridging phosphoryl oxygens and a network of interactions that positions the nucleophilic water molecule and gamma-phosphoryl group with respect to one another may also contribute to catalysis. It is speculated that a significant fraction of the GAP-activated GTPase activity of Ras arises from an additional interaction of the beta-gamma bridge oxygen with an Arg side chain that is provided in trans by GAP. The conclusions for Ras and related G proteins are expected to apply more widely to other enzymes that catalyze phosphoryl (-PO(3)2-) transfer, including kinases and phosphatases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast SIN1 protein is a nuclear protein that together with other proteins behaves as a transcriptional repressor of a family of genes. In addition, sin1 mutants are defective in proper mitotic chromosome segregation. In an effort to understand the basis for these phenotypes, we employed the yeast two-hybrid system to identify proteins that interact with SIN1 in vivo. Here we demonstrate that CDC23, a protein known to be involved in sister chromatid separation during mitosis, is able to directly interact with SIN1. Furthermore, using recombinant molecules in vitro, we show that the N terminal of SIN1 is sufficient to bind a portion of CDC23 consisting solely of tetratrico peptide repeats. Earlier experiments identified the C-terminal domain of SIN1 to be responsible for interaction with a protein that binds the regulatory region of HO, a gene whose transcription is repressed by SIN1. Taken together with the results presented here, we suggest that SIN1 is a chromatin protein having at least a dual function: The N terminal of SIN1 interacts with the tetratrico peptide repeat domains of CDC23, a protein involved in chromosome segregation, whereas the C terminal of SIN1 binds proteins involved in transcriptional regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the involvement of both Ras-binding sites in effective Raf-1-mediated transformation provides insight into the molecular aspects and consequences of Ras-Raf interactions. The Raf-1 CRD is a member of an emerging family of domains, many of which are found within signal transducing proteins. Several contain binding sites for diacylglycerol (or phorbol esters) and phosphatidylserine and are believed to play a role in membrane translocation and enzyme activation. The CRD from Raf-1 does not bind diacylglycerol but interacts with Ras and phosphatidylserine. To investigate the ligand-binding specificities associated with CRDs, we have determined the solution structure of the Raf-1 CRD using heteronuclear multidimensional NMR. We show that there are differences between this structure and the structures of two related domains from protein kinase C (PKC). The differences are confined to regions of the CRDs involved in binding phorbol ester in the PKC domains. Since phosphatidylserine is a common ligand, we expect its binding site to be located in regions where the structures of the Raf-1 and PKC domains are similar. The structure of the Raf-1 CRD represents an example of this family of domains that does not bind diacylglycerol and provides a framework for investigating its interactions with other molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudohyphal differentiation in Saccharomyces cerevisiae was first described as a response of diploid cells to nitrogen limitation. Here we report that haploid and diploid starch-degrading S. cerevisiae strains were able to switch from a yeast form to a filamentous pseudohyphal form in response to carbon limitation in the presence of an ample supply of nitrogen. Two genes, MSS10 and MUC1, were cloned and shown to be involved in pseudohyphal differentiation and invasive growth. The deletion of MSS10 resulted in extremely reduced amounts of pseudohyphal differentiation and invasive growth, whereas the deletion of MUC1 abolished pseudohyphal differentiation and invasive growth completely. Mss10 appears to be a transcriptional activator that responds to nutrient limitation and coregulates the expression of MUC1 and the STA1-3 glucoamylase genes, which are involved in starch degradation. MUC1 encodes a 1367-amino acid protein, containing several serine/threonine-rich repeats. Muc1 is a putative integral membrane-bound protein, similar to mammalian mucin-like membrane proteins that have been implicated to play a role in the ability of cancer cells to invade other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rna1p is the GTPase activating enzyme for Ran/TC4, a Ras-like GTPase necessary for nuclear/cytosolic exchange. Although most wild-type Rna1p is located in the cytosol, we found that the vast majority of the mutant Rna1-1p and, under appropriate physiological conditions, a small portion of the wild-type Rna1p cofractionate with yeast nuclei. Subnuclear fractionation studies show that most of the Rna1p is tightly associated with nuclear components, and that a portion of the active protein can be solubilized by treatments that fail to solubilize inactive Rna1-1p. To learn the precise nuclear locations of the Rna1 proteins, we studied their subcellular distributions in HeLa cells. By indirect immuno-fluorescence we show that wild-type Rna1p has three subcellular locations. The majority of the protein is distributed throughout the cytosol, but a portion of the protein is nucleus-associated, located at both the cytosolic surface and within the nucleoplasm. Mutant Rna1-1p is found at the outer nuclear surface and in the cytosol. We propose that a small pool of the wild-type Rna1p is located in the nuclear interior, supporting the model that the same components of the Ran/TC4 GTPase cycle exist on both sides of the nuclear membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potent transforming activity of membrane-targeted Raf-1 (Raf-CAAX) suggests that Ras transformation is triggered primarily by a Ras-mediated translocation of Raf-1 to the plasma membrane. However, whereas constitutively activated mutants of Ras [H-Ras(61L) and K-Ras4B(12V)] and Raf-1 (DeltaRaf-22W and Raf-CAAX) caused indistinguishable morphologic and growth (in soft agar and nude mice) transformation of NIH 3T3 fibroblasts, only mutant Ras caused morphologic transformation of RIE-1 rat intestinal cells. Furthermore, only mutant Ras-expressing RIE-1 cells formed colonies in soft agar and developed rapid and progressive tumors in nude mice. We also observed that activated Ras, but not Raf-1, caused transformation of IEC-6 rat intestinal and MCF-10A human mammary epithelial cells. Although both Ras- and DeltaRaf-22W-expressing RIE-1 cells showed elevated Raf-1 and mitogen-activated protein (MAP) kinase activities, only Ras-transformed cells produced secreted factors that promoted RIE-1 transformation. Incubation of untransformed RIE-1 cells in the presence of conditioned medium from Ras-expressing, but not DeltaRaf-22W-expressing, cells caused a rapid and stable morphologic transformation that was indistinguishable from the morphology of Ras-transformed RIE-1 cells. Thus, induction of an autocrine growth mechanism may distinguish the transforming actions of Ras and Raf. In summary, our observations demonstrate that oncogenic Ras activation of the Raf/MAP kinase pathway alone is not sufficient for full tumorigenic transformation of RIE-1 epithelial cells. Thus, Raf-independent signaling events are essential for oncogenic Ras transformation of epithelial cells, but not fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition of DNA synthesis prevents mitotic entry through the action of the S phase checkpoint. In the yeast Saccharomyces cerevisiae, an essential protein kinase, Spk1/Mec2/Rad53/Sad1, controls the coupling of S phase to mitosis. In an attempt to identify genes that genetically interact with Spk1, we have isolated a temperature-sensitive mutation, rfc5-1, that can be suppressed by overexpression of SPK1. The RFC5 gene encodes a small subunit of replication factor C complex. At the restrictive temperature, rfc5-1 mutant cells entered mitosis with unevenly separated or fragmented chromosomes, resulting in loss of viability. Thus, the rfc5 mutation defective for DNA replication is also impaired in the S phase checkpoint. Overexpression of POL30, which encodes the proliferating cell nuclear antigen, suppressed the replication defect of the rfc5 mutant but not its checkpoint defect. Taken together, these results suggested that replication factor C has a direct role in sensing the state of DNA replication and transmitting the signal to the checkpoint machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bcl-2 protein blocks programmed cell death (apoptosis) through an unknown mechanism. Previously we identified a Bcl-2 interacting protein BAG-1 that enhances the anti-apoptotic effects of Bcl-2. Like BAG-1, the serine/threonine protein kinase Raf-1 also can functionally cooperate with Bcl-2 in suppressing apoptosis. Here we show that Raf-1 and BAG-1 specifically interact in vitro and in yeast two-hybrid assays. Raf-1 and BAG-1 can also be coimmunoprecipitated from mammalian cells and from insect cells infected with recombinant baculoviruses encoding these proteins. Furthermore, bacterially-produced BAG-1 protein can increase the kinase activity of Raf-1 in vitro. BAG-1 also activates this mammalian kinase in yeast. These observations suggest that the Bcl-2 binding protein BAG-1 joins Ras and 14-3-3 proteins as potential activators of the kinase Raf-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wild-type diploid cells of Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) at the MAT locus can be efficiently repaired by gene conversion using the homologous chromosome sequences. Repair of the broken chromosome was nearly eliminated in rad52delta diploids; 99% lost the broken chromosome. However, in rad51delta diploids, the broken chromosomes were repaired approximately 35% of the time. None of these repair events were simple gene conversions or gene conversions with an associated crossover, instead, they created diploids homozygous for the MAT locus and all markers in the 100-kb region distal to the site of the DSB. In rad51delta diploids, the broken chromosome can apparently be inherited for several generations, as many of these repair events are found as sectored colonies, with one part being repaired and the other part being lost the broken chromosome. Similar events occur in about 2% of wild-type cells. We propose that a broken chromosome end can invade a homologous template in the absence of RAD51 and initiate DNA replication that may extend to the telomere, 100 or more kb away. Such break-induced replication appears to be similar to recombination-initiated replication in bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c-myc oncogene has been shown to play a role in cell proliferation and apoptosis. The realization that myc oncogenes may control the level of expression of other genes has opened the field to search for genetic targets for Myc regulation. Recently, using a subtraction/coexpression strategy, a murine genetic target for Myc regulation, called EC439, was isolated. To further characterize the ECA39 gene, we set out to determine the evolutionary conservation of its regulatory and coding sequences. We describe the human, nematode, and budding yeast homologs of the mouse ECA39 gene. Identities between the mouse ECA39 protein and the human, nematode, or yeast proteins are 79%, 52%, and 49%, respectively. Interestingly, the recognition site for Myc binding, located 3' to the start site of transcription in the mouse gene, is also conserved in the human homolog. This regulatory element is missing in the ECA39 homologs from nematode or yeast, which also lack the regulator c-myc. To understand the function of ECA39, we deleted the gene from the yeast genome. Disruption of ECA39 which is a recessive mutation that leads to a marked alteration in the cell cycle. Mutant haploids and homozygous diploids have a faster growth rate than isogenic wild-type strains. Fluorescence-activated cell sorter analyses indicate that the mutation shortens the G1 stage in the cell cycle. Moreover, mutant strains show higher rates of UV-induced mutations. The results suggest that the product of ECA39 is involved in the regulation of G1 to S transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian phosphatidylinositol transfer proteins (PITP) and the yeast Saccharomyces cerevisiae PITP (SEC14p) that show no sequence homology both catalyze exchange of phosphatidylinositol (PI) between membranes compartments in vitro. In HL-60 cells where the cytosolic proteins are depleted by permeabilization, exogenously added PITPalpha is required to restore G protein-mediated phospholipase Cbeta (PLCbeta) signaling. Recently, a second mammalian PITPbeta form has been described that shows 77% identity to rat PITPalpha. We have examined the ability of the two mammalian PITPs and SEC14p to restore PLC-mediated signaling in cytosol-depleted HL-60 and RBL-2H3 cells. Both PITPalpha and PITPbeta isoforms as well as SEC14p restore G protein-mediated PLCbeta signaling with a similar potency. In RBL-2H3 cells, crosslinking of the IgE receptor by antigen stimulates inositol lipid hydrolysis by tyrosine phosphorylation of PLCgamma1. Permeabilization of RBL cells leads to loss of PLCgamma1 as well as PITP into the extracellular medium and this coincides with loss of antigen-stimulated lipid hydrolysis. Both PLCgamma1 and PITP were required to restore inositol lipid signaling. We conclude that (i) because the PI binding/transfer activities of PITP/SEC14p is the common feature shared by all three transfer proteins, it must be the relevant activity that determines their abilities to restore inositol lipid-mediated signaling and (ii) PITP is a general requirement for inositol lipid hydrolysis regardless of how and which isoform of PLC is activated by the appropriate agonist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyze the function of the 5' DNase I hypersensitive sites (HSs) of the locus control region (LCR) on beta-like globin gene expression, a 2.3-kb deletion of 5'HS3 or a 1.9-kb deletion of 5'HS2 was recombined into a beta-globin locus yeast artificial chromosome, and transgenic mice were produced. Deletion of 5'HS3 resulted in a significant decrease of epsilon-globin gene expression and an increase of gamma-globin gene expression in embryonic cells. Deletion of 5'HS2 resulted in only a small decrease in expression of epsilon-, gamma-, and beta-globin mRNA at all stages of development. Neither deletion affected the temporal pattern of globin gene switching. These results suggest that the LCR contains functionally redundant elements and that LCR complex formation does not require the presence of all DNase I hypersensitive sites. The phenotype of the 5'HS3 deletion suggests that individual HSs may influence the interaction of the LCR with specific globin gene promoters during the course of ontogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ras oncogenes are mutated in at variety of human tumors, which suggests that they play an important role in human carcinogenesis. To determine whether continued oncogenic ras expression is necessary to maintain the malignant phenotype, we studied the human fibrosarcoma cell line, HT1080, which contains one mutated and one wild-type N-ras allele. We isolated a variant of this cell line that no longer contained the mutated copy of the N-ras gene. Loss of mutant N-ras resulted in cells that displayed a less transformed phenotype characterized by a flat morphology, decreased growth rate, organized actin stress fibers, and loss of anchorage-independent growth. The transformed phenotype was restored following reintroduction of mutant N-ras. Although loss of the oncogenic N-ras drastically affected in vitro growth parameters, the variant remained tumorigenic in nude mice indicating that mutated N-ras expression is not necessary for maintenance of the tumorigenic phenotype. We confirmed this latter observation in colon carcinoma cell lines that have lost activated K-ras expression via targeted knockout of the mutant K-ras gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Saccharomyces cerevisiae strain with a disrupted yeast cadmium resistance factor (YCF1) gene (DTY168) is hypersensitive to cadmium. YCF1 resembles the human multidrug resistance-associated protein MRP (63% amino acid similarity), which confers resistance to various cytotoxic drugs by lowering the intracellular drug concentration. Whereas the mechanism of action of YCF1 is not known, MRP was recently found to transport glutathione S-conjugates across membranes. Here we show that expression of the human MRP cDNA in yeast mutant DTY168 cells restores cadmium resistance to the wild-type level. Transport of S-(2,4-dinitrobenzene)-glutathione into isolated yeast microsomal vesicles is strongly reduced in the DTY168 mutant and this transport is restored to wild-type level in mutant cells expressing MRP cDNA. We find in cell fractionation experiments that YCF1 is mainly localized in the vacuolar membrane in yeast, whereas MRP is associated both with the vacuolar membrane and with other internal membranes in the transformed yeast cells. Our results indicate that yeast YCF1 is a glutathione S-conjugate pump, like MRP, and they raise the possibility that the cadmium resistance in yeast involves cotransport of cadmium with glutathione derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chédiak-Higashi syndrome in man and the beige mutation of mice are phenotypically similar disorders that have profound effects upon lysosome and melanosome morphology and function. We isolated two murine yeast artificial chromosomes (YACs) that, when introduced into beige mouse fibroblasts, complement the beige mutation. The complementing YACs exist as extrachromosomal elements that are amplified in high concentrations of G418. When YAC-complemented beige cells were fused to human Chédiak-Higashi syndrome or Aleutian mink fibroblasts, complementation of the mutant phenotype also occurred. These results localize the beige gene to a 500-kb interval and demonstrate that the same or homologous genes are defective in mice, minks, and humans.