946 resultados para YEAST ISO-1-CYTOCHROME-C
Resumo:
Lithium iron phosphate (LiFePO4) electronically wired by multi-walled carbon nanotubes (MWCNTs) and in-situ transformed graphitic carbon for lithium-ion batteries are discussed here. Presence of MWCNTs up to a maximum of 0.5% in porous LiFePO4 (abbreviated as LFP-CNT) resulted in remarkable reversible cyclability and rate capability compared to LFP coated with highly disordered carbon (abbreviated as LFP-C). In the current range (30-1500) mAg(-1), specific capacity of LFP-CNT (approximate to 150-50 mAhg(-1)) is observed to be always higher compared to LFP-C (approximate to 120-0 mAhg(-1)). At higher currents of 250-1500 mAg(-1) LFP-C performed poorly compared to LFP-CNT. LFP-C showed considerable decay in capacity with increase in cycle number at intermediate high currents (approximate to 250 mAg(-1)) whereas at very high currents (approximate to 750 mAg(-1)) it is nearly zero. The LFP-CNT showed no such detrimental behavior in battery performance. The exemplary performance of the LFP-CNT is attributed to combination of both enhanced LFP structural stability, as revealed by Raman spectra and formation of an efficient percolative network of carbon nanotubes which during the course of galvanostatic cycling gets gradually transformed to graphitic carbon. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.015204jes] All rights reserved.
Resumo:
We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.
Resumo:
A series of (2-aminothiazol-4-yl)methylester (5a-t) derivatives were synthesized in good yields and characterized by H-1 NMR, C-13 NMR, mass spectral and elemental analyses. The crystal structure of 5a was evidenced by X-ray diffraction study. The compounds were evaluated for their preliminary in vitro antibacterial, antifungal activity and were screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain. The synthesized compounds displayed interesting antimicrobial activity. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The evolution of microstructure and texture in Hexagonal Close Pack commercially pure titanium has been studied in torsion in a strain rate regime of 0.001 to 1 s(-1). Free end torsion tests carried out on titanium rods indicated higher stress levels at higher strain rate but negligible change in the strain-hardening behaviour. There was a decrease in the intra-granular misorientation while a negligible change in the amount of contraction and extension twins was observed with increase in strain rate. The deformed samples showed a C-1 fibre (c-axis is first rotated 90 degrees in shear direction and then +30 degrees in shear plane direction) at all the strain rates. With the increase in strain rate, there was an increase in the intensity of the C-1 fibre and it became more heterogeneous with a strong {11(2)over-bar6}< 2(8)over-bar)63 > component. In the absence of extensive twinning, pyramidal < c+a > slip system is attributed for the observed deformation texture. The present investigation, therefore, substantiates the theoretical prediction of increase in strength of texture with strain rate in torsion.
Resumo:
Benzoyl phenyl urea, a class of insect growth regulator's acts by inhibiting chitin synthesis. Carvacrol, a naturally occurring monoterpenoid is an effective antifungal agent. We have structurally modified carvacrol (2-methyl-5-1-methylethyl] phenol) by introducing benzoylphenyl urea linkage. Two series of benzoylcarvacryl thiourea (BCTU, 4a-f) and benzoylcarvacryl urea (BCU, 5a-f) derivatives were prepared and characterized by elemental analysis, IR, H-1 and C-13 NMR and Mass spectroscopy. Derivatives 4b, 4d, 4e, 4f and 5d, 5f showed comparable insecticidal activity with the standard BPU lufenuron against Dysdercus koenigii. BCTU derivatives 4c, 4e and BCU 5c showed good antifungal activity against phytopathogenic fungi viz. Magnaporthe grisae, Fusarium oxysporum, Dreschlera oryzae; food spoilage yeasts viz. Debaromyces hansenii, Pichia membranifaciens; and human pathogens viz. Candida albicans and Cryptococcus neoformans. Compounds 5d, 5e and 5f showed potent activity against human pathogens. Moderate and selective activity was observed for other compounds. All the synthesized compounds were non-haemolytic. These compounds have potential application in agriculture and medicine. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Thermodynamic properties of GdRhO3 are investigated in the temperature range from 900 to 1300 K by employing a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of GdRhO3 from component binary oxide Gd2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure can be expressed as; Delta G(f(ox))(o)(+/- 60)/J mol(-1) = -56603 + 3.78(T/K) Based on the thermodynamic information on GdRhO3 from experiment and auxiliary data for binary oxides from the literature and estimated properties of Gd-Rh alloys, phase relations are computed for the system Gd-Rh-O at 1273 K. Gibbs free energies for intermetallic phases in the binary Gd-Rh are evaluated using calorimetric data available in the literature for two compositions and Miedema's model, consistent with the binary phase diagram. Isothermal section of the ternary phase diagram, oxygen potential-composition diagram and a 3-D chemical potential diagram for the system Gd-Rh-O at 1273 K are developed. Phase relations in the ternary Gd-Rh-O are also computed as a function of temperature at constant oxygen partial pressures. The ternary oxide, GdRhO3 decomposes to Gd2O3 with B-rare earth structure, metallic Rh and O-2 at 1759(+/- 2) K in pure O-2 and 1649(+/- 2) K in air at a total pressure P-0 -0.1 MPa. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we report a novel piezoelectric ZnO nanogenerator on flexible metal alloy substrate (Phynox alloy) for energy harvesting and sensing applications. The vertically aligned ZnO nanowires are sandwiched between Au electrodes. The aligned growth of ZnO nanowires have been successfully synthesized on Au coated metal alloy substrate by hydrothermal method at low temperature (95 +/- 1 degrees C). The as-synthesized vertically aligned ZnO nanowires were characterized using FE-SEM. Further, PMMA is spin coated over the aligned ZnO nanowires for the purpose of their long term stability. The fabricated nanogenerator is of size 30mm x 6mm. From energy harvesting point of view, the response of the nanogenerator due to finger tip impacts ranges from 0.9 V to 1.4V. Also for sensing application, the maximum output voltage response of the nanogenerator is found to be 2.86V due to stainless steel (SS) ball impact and 0.92 V due to plastic ball impact.
Resumo:
Ellagic acid, a naturally occurring polyphenol, extracted from pomegranate husk, is found to be a very good organic electrode material for rechargeable lithium batteries with high reversible capacities of similar to 450 and 200 mA h g(-1) at C/10 and C/2.5 discharge rates, respectively; ex situ NMR studies reveal possible lithiation-delithiation modes at different stages of the charge-discharge process.
Resumo:
Electrical switching studies on amorphous Si15Te74Ge11 thin film devices show interesting changes in the switching behavior with changes in the input energy supplied; the input energy determines the extent of crystallization in the active volume, which is reflected in the value of SET resistances. This in turn, determines the trend exhibited by switching voltage (V-t) for different input conditions. The results obtained are analyzed on the basis of the amount of Joule heat generated, which determines the temperature of the active volume. Depending on the final temperature, devices are rendered either in the intermediate state with a resistance of 5*10(2) Omega or the ON state with a resistance of 5*10(1) Omega. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Four dinucleating bis(thiosemicarbazone) ligands and their zinc complexes have been synthesized and characterized by multinuclear NMR (H-1 and C-13), IR, UV-Vis, ESI-MS and fluorescence spectroscopic techniques. Their purity was assessed by elemental analysis. Cytotoxicity was tested against five human cancer cell lines using the sulphorhodamine B (SRB) assay, where one of the complexes, 1,3-bis{biacetyl-2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} propane (6), was found to be quite cytotoxic against MCF-7 (breast cancer) and HepG2 (hepatoma cancer) cell lines, with a potency similar to that of the well known anticancer drug adriamycin. It is evident from the cellular uptake studies that the uptake is same for the active complex 6 and the inactive complex 8 (1,6-bis{biacetyl- 2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} hexane) in MCF-7 and HepG2 cell lines. In vitro DNA binding and cleavage studies revealed that all complexes bind with DNA through electrostatic interaction, and cause no significant cleavage of DNA. (C) 2'13 Elsevier B. V. All rights reserved.
Resumo:
Background: Antiretroviral Therapy (ART) is currently the major therapeutic intervention in the treatment of AIDS. ART, however, is severely limited due to poor availability, high cytotoxicity, and enhanced metabolism and clearance of the drug molecules by the renal system. The use of nanocarriers encapsulating the antiretroviral drugs may provide a solution to the aforementioned problems. Importantly, the application of mildly immunogenic polymeric carrier confers the advantage of making the nanoparticles more visible to the immune system leading to their efficient uptake by the phagocytes. Methods: The saquinavir-loaded chitosan nanopartides were characterized by transmission electron microscopy and differential scanning calorimetry and analyzed for the encapsulation efficiency, swelling characteristics, particle size properties, and the zeta potential. Furthermore, cellular uptake of the chitosan nanocarriers was evaluated using confocal microscopy and Flow cytometry. The antiviral efficacy was quantified using viral infection of the target cells. Results: Using novel chitosan carriers loaded with saquinavir, a protease inhibitor, we demonstrate a drug encapsulation efficiency of 75% and cell targeting efficiency greater than 92%. As compared to the soluble drug control, the saquinavir-loaded chitosan carriers caused superior control of the viral proliferation as measured by using two different viral strains, NL4-3 and Indie-C1, and two different target T-cells, Jurkat and CEM-CCR5. Conclusion: Chitosan nanoparticles loaded with saquinavir were characterized and they demonstrated superior drug loading potential with greater cell targeting efficiency leading to efficient control of the viral proliferation in target T-cells. General significance: Our data ascertain the potential of chitosan nanocarriers as novel vehicles for HIV-1 therapeutics. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Diffusion controlled growth of the phases in Hf-Si and Zr-Si systems are studied by bulk diffusion couple technique. Only two phases grow in the interdiffusion zone, although several phases are present in both the systems. The location of the Kirkendall marker plane, detected based on the grain morphology, indicates that disilicides grow by the diffusion of Si. Diffusion of the metal species in these phases is negligible. This indicates that vacancies are present mainly on the Si sublattice. The activation energies for integrated diffusion coefficients in the HfSi2 and ZrSi2 are estimated as 394 +/- 37 and 346 +/- 34 kJ mol(-1), respectively. The same is calculated for the HfSi phase as 485 +/- 42 kJ mol(-1). The activation energies for Si tracer diffusion in the HfSi2 and ZrSi2 phases are estimated as 430 +/- 36 and 348 +/- 34 kJ mol(-1), respectively. (C) 2013 Elsevier B.V. All rights reserved.