979 resultados para X-rays double stars
Resumo:
Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 μm to 2.1 μm. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si.
Resumo:
A radioisotope energy-dispersive X-ray (EDX) system has been used on board the German research vessel "Valdivia" during an exploration expedition in the northern equatorial Pacific in 1973. The instrumentation used consisted of an X-ray detection system incorporating a 30 mm2 effective-area Si (Li) detector with a measured energy resolution of 195 eV for Mn K alpha X-rays, standard nuclear electronics, a 1024-channel analyser and a data read-out unit. The X-ray spectra in the manganese-nodule samples were excited by a 30-mCi 238Pu source. The six elements Mn, Fe, Co, Ni, Cu and Zn were analysed on board. Precision values for the analyses were less than 3% for Mn, Fe, Ni, Cu and Zn and about 5% for Co. A total amount of 350 analyses was carried out during a one-month cruise. Average contents of 190 analysed whole manganese-nodule samples from all the sampling sites of the covered area were 23.3% Mn, 6.7% Fe, 0.23% Co, 1.16% Ni, 0.94% Cu and 0.10% Zn. The average content of the base metals expressed as the sum of the Co, Ni, Cu and Zn contents was 2.48%. A linear relationship between Mn and Ni in all analysed samples, including whole manganese-nodule samples, zones of manganese nodules and manganese crusts, was observed. The Mn/Ni ratio calculated by regression analysis was 23.0. Zonal variations of the chemical contents of the six elements in the manganese nodules were found. A size classification of the manganese nodules has been suggested. Geochemical correlations of Cu and Ni versus Mn/Fe in the investigated samples are given.
Resumo:
The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.
Resumo:
A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.
Resumo:
The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (Te≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.
Resumo:
Introduction: Foundation doctors are expected to assess and interpret plain x-ray studies of the chest/abdomen before a definitive report is issued by senior staff. The Royal College of Radiologists have published guidelines (RCR curriculum) on the scope of plain film findings medical students should be familiar with.1 Studies have shown that the x-ray interpretation without feedback does not significantly improve diagnostic ability. 2 Queen’s University, Belfast Trust Radiology and Experior Medical developed an online system to assess individual student ability to interpret X-ray findings. Over a series of assessments each student’s profile is built up, identifying strengths and weakness. The system can then create bespoke individual assessments re-evaluating previously identified weak areas and quantifying interpretative skill improvement. Aim: To determine how readily an online system is adopted by senior medical students, investigating if increasing exposure to x-ray interpretation combined with cyclical formative feedback enhances performance. Methods: The system was offered to all 270 final year medical students as an online resource. The system comprised a series of 20 weekly 30 minute assessments, containing normal and abnormal x-rays within the RCR curriculum. After each assessment students were given formative feedback, including their own result, annotated answers, peer group comparison and a breakdown of areas of strength and weakness. Focus groups of 4-5 students addressed student perspectives of the system, including ease of use, image resolution, system performance across different operating platforms, perceived value of formative feedback loops, breakdown of performance and the value of bespoke personalised assessments. Research Ethics Approval was granted for the study. Data analysis was via two-sided one-sample t-test; initial minimal recruitment was estimated as 60 students, to detect a mean 10% change in performance, with a standard deviation of 20%. Results and Discussion: Over 80% (n = XXX/270) of the student cohort engaged with the study. Student baseline average was 39%, increasing to 62% by the exit test. The steadily sustained improvement (57% relative performance in interpretative diagnostic accuracy) was despite increasing test difficulty. Student feedback via focus groups was universally positive throughout the examined domains. Conclusion: The online resource proved to be valuable, with high levels of student engagement, improving performance despite increasingly difficulty testing and positive learner experience with the system. References: 1. Undergraduate Radiology Curriculum, The Royal College of Ra, April 2012. Ref No. BFCR(12)4 The Royal College of Radiologists, April 2012 2. I Satia, S Bashagha, A Bibi, R Ahmed, S Mellor, F Zaman. Assessing the accuracy and certainty in interpretating chest x-rays in the medical division. Clin Med August 2013 Vol.13 no. 4 349-352
Resumo:
An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.
Resumo:
Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N-2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15mol%). The material can be recycled at least 10times without alteration of its catalytic properties.
Resumo:
The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites.
Resumo:
Tarsal coalition (a congenital fibrous, cartilaginous or bony connection between two bones) often leads to a flatfoot deformity in children. Usually it presents with recurrent ankle sprains or insidious onset of a painful rigid flatfoot and movement limitation of midtarsal and subtalar joints. Clinical diagnosis is confirmed by X-rays, computed axial tomography and nuclear magnetic resonance. The anteater nose sign is caused by a tubular elongation of the anterior process of the calcaneus that approaches or overlaps the tarsal scaphoid (navicular) and resembles the nose of an anteater on a lateral foot or ankle radiograph. The treatment of this union is primarily symptomatic but if the pain persists must be surgical .
Resumo:
The modeling technique of Mackay et al. is applied to simulate the coronal magnetic field of NOAA active region AR10977 over a seven day period (2007 December 2-10). The simulation is driven with a sequence of line-of-sight component magnetograms from SOHO/MDI and evolves the coronal magnetic field though a continuous series of non-linear force-free states. Upon comparison with Hinode/XRT observations, results show that the simulation reproduces many features of the active region's evolution. In particular, it describes the formation of a flux rope across the polarity inversion line during flux cancellation. The flux rope forms at the same location as an observed X-ray sigmoid. After five days of evolution, the free magnetic energy contained within the flux rope was found to be 3.9 × 1030 erg. This value is more than sufficient to account for the B1.4 GOES flare observed from the active region on 2007 December 7. At the time of the observed eruption, the flux rope was found to contain 20% of the active region flux. We conclude that the modeling technique proposed in Mackay et al.—which directly uses observed magnetograms to energize the coronal field—is a viable method to simulate the evolution of the coronal magnetic field.
Resumo:
La técnica de difracción de rayos X de muestras en polvo se ha convertido en una de las herramientas más útiles en el ámbito internacional para el análisis mineralógico cuantitativo de materiales -- Con base en esta técnica se han desarrollado diversos métodos con los cuales no solo es posible obtener información cualitativa y cuantitativa de las fases cristalinas en un material, sino también del contenido de amorfos si el material es semicristalino -- Los métodos de este tipo más difundidos son el método de cuantificación de fases de Rietveld y el método del estándar interno de cuantificación del contenido de amorfos -- En el método de Rietveld se modela todo el perfil de difracción observado a partir de parámetros estructurales de las fases constituyentes, lo que permite refinar parámetros de naturaleza instrumental y cristalográfica, se compara el difractograma calculado y el observado, se reducen las diferencias a través del método de mínimos cuadrados y se obtiene a partir de esto los resultados cuantitativos -- En el método del estándar interno se obtiene un estimativo del contenido de amorfos mezclando con la muestra una cantidad conocida de un estándar interno apropiado y con base en esto, se corrige el contenido de fases en la mezcla cuantificado por el método de Rietveld -- El trabajo consistió en el estudio y evaluación del método de Rietveld y del estándar interno, para lo cual se indagó acerca del efecto en el contenido de amorfos cuantificado al variar el tipo de estándar interno utilizado y su cantidad añadida -- Se estudiaron los factores de distorsión relacionados con la orientación preferencial, la microabsorción y el efecto en los resultados del tipo de parámetros refinados en el modelamiento del perfil de difracción, con el objeto de proponer un protocolo validado de cuantificación del contenido de amorfos en materiales cerámicos con base en los métodos de Rietveld y del estándar interno usando el programa X'Pert High Score Plus® v3.0e de PANalytical®, así como de aplicarlo en la caracterización de ciertos materiales seleccionados
Resumo:
Resultante dos avanços tecnológicos, conseguiu-se obter um aço que elimina o paradigma de se aliar alta ductilidade e resistência mecânica. Assim foi desenvolvido durante a última década o aço TWIP, deformação induzida por maclação, tendo como principal mecanismo de deformação a maclação. Este presente trabalho teve como principal objetivo caraterizar o aço TWIP980 em três temáticas diferentes: química, mecânica e microestrutura. Na primeira temática, a química, esta teve como objetivo encontrar a designação do aço TWIP em estudo. Sendo apenas conhecida a direção de laminação, RD, e a empresa que forneceu as chapas, a POSCO, o objetivo era obter a sua designação. Através da comparação das curvas de tração encontradas para o material em estudo, e conjuntamente, com as diversas curvas de tração de vários aços TWIP da empresa POSCO, realizou-se a comparação. Visto ter-se ficado reduzido a dois possíveis aços TWIP, foi através de uma análise à composição química, EDS - Espectroscopia da energia dispersa por raios-X, que se concluiu que o aço em estudo era o TWIP980. Na caraterização mecânica, e através de ensaios de tração, foram estudadas propriedades como: o módulo de elasticidade, tensão limite elástico, ductilidade, anisotropia, coeficiente de encruamento e Poisson. Estas propriedades foram estudas para três mudanças na trajetória de deformação e quatro pré-deformações em estudo. Assim estudou-se a alteração de trajetória para os ângulos a 0º, 45º e 90º em relação a RD, para as deformações de engenharia de 0%, 10%, 20% e 30%. Por último, na análise à microestrutura, esta teve como objetivo obter valores para o tamanho de grão e de macla bem como as suas orientações cristalográficas. Também a densidade de deslocações e maclação para cada uma das 4 pré-deformações esteve em estudo. Estes parâmetros foram obtidos através de microscopia ótica, eletrónica de varrimento, MEV e eletrónica de transmissão, MET.
Resumo:
Background. Duodenal injuries are rare in children and classically present following a fall over the handle bar. Retroperitoneal location of the duodenum may lead to delay in diagnosis, and missed injuries are associated with increased morbidity and mortality. Case report. A 5-year-old child was admitted to the National Trauma Center, in Tirana (Albania), 28 hours after a Motor Vehicle Crash (MVC), complaining of mild abdominal pain. He was febrile (39°C) and had a white blood cells count of 18,000 mm3. On physical exam he had mild tenderness. Plain abdominal X-rays and Focused Abdominal Sonography for Trauma (FAST) were negative for free air or free fluid. The CT scan of the abdomen demonstrated free air and fluid in the retroperitoneal space. At laparatomy, a perforation of the second portion of the duodenum was found. A single layer suture repair of the duodenum with wide drainage was performed. The patient was discharged from the hospital tolerating oral feeding 8 days later. Conclusion. Duodenal injuries in children are rare. Most duodenal hematomas are managed non-operatively. This is a case of MCV with delayed presentation that was treated surgically for perforation successfully.
Resumo:
An ideal biomaterial for dental implants must have very high biocompatibility, which means that such materials should not provoke any serious adverse tissue response. Also, used metal alloys must have high fatigue resistance due the masticatory force and good corrosion resistance. These properties are rendered by using alpha and beta stabilizers, such as Al, V, Ni, Fe, Cr, Cu, Zn. Commercially pure titanium (TiCP) is used often for dental and orthopedic implants manufacturing. However, sometimes other alloys are employed and consequently it is essential to research the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of stabilizing elements within existing limits and standards for such materials. For alloy characterization and identification of stabilizing elements it was used EDXRF technique. This method allows to perform qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- rays tubes (AMPTEK Mini X model with Ag and Au targets), a X-123SDD detector (AMPTEK) and a 0.5mm Cu collimator, developed due to the sample characteristics. The other experimental setup used as a complementary technique is composed of an X-ray tube with a Mo target, collimator 0.65mm and XFlash (SDD) detector - ARTAX 200 (BRUKER). Other method for elemental characterization by energy dispersive spectroscopy (EDS) applied in present work was based on Scanning Electron Microscopy (SEM) EVO® (Zeeis). This method also was used to evaluate the surface microstructure of the sample. The percentual of Ti obtained in the elementary characterization was among 93.35 ± 0.17% and 95.34 ± 0.19 %. These values are considered below the reference limit of 98.635% to 99.5% for TiCP, established by Association of metals centric materials engineers and scientists Society (ASM). The presence of elements Al and V in all samples also contributed to underpin the fact that are not TiCP implants. The values for Al vary between 6.3 ± 1.3% and 3.7 ± 2.0% and for V, between 0.26 ± 0.09% and 0.112 ± 0.048%. According to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP and in accordance with the National Institute of Standards and Technology (NIST), the presence of Al should be <0.01% and V should be of 0.009 ± 0.001%. Obtained results showed that implant materials are not exactly TiCP but, were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The quantitative analysis and elementary characterization of experimental results shows that the best accuracy and precision were reached with X-Ray tube with Au target and collimator of 0.5 mm. Use of technique of EDS confirmed the results of EDXRF for Ti-Al-V alloy. Evaluating the surface microstructure by SEM of the implants, it was possible to infer that ten of the thirteen studied samples are contemporaneous, rough surface and three with machined surface.