995 resultados para Wynn, Elliott J.
Resumo:
Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.
Resumo:
Detection of growth-promoter use in animal production systems still proves to be an analytical challenge despite years of activity in the field. This study reports on the capability of NMR metabolomic profiling techniques to discriminate between plasma samples obtained from cattle treated with different groups of growth-promoting hormones (dexamethasone, prednisolone, oestradiol) based on recorded metabolite profiles. Two methods of NMR analysis were investigated—a Carr–Purcell–Meiboom–Gill (CPMG)-pulse sequence technique and a conventional 1H NMR method using pre-extracted plasma. Using the CPMG method, 17 distinct metabolites could be identified from the spectra. 1H NMR analysis of extracted plasma facilitated identification of 23 metabolites—six more than the alternative method and all within the aromatic region. Multivariate statistical analysis of acquired data from both forms of NMR analysis separated the plasma metabolite profiles into distinct sample cluster sets representative of the different animal study groups. Samples from both sets of corticosteroid-treated animals—dexamethasone and prednisolone—were found to be clustered relatively closely and had similar alterations to identified metabolite panels. Distinctive metabolite profiles, different from those observed within plasma from corticosteroid-treated animal plasma, were observed in oestradiol-treated animals and samples from these animals formed a cluster spatially isolated from control animal plasma samples. These findings suggest the potential use of NMR methodologies of plasma metabolite analysis as a high-throughput screening technique to aid detection of growth promoter use.
Resumo:
We investigated, using the single-pass isolated perfused rat liver preparation, whether the centrilobular location of hepatic oxidative drug metabolism could be a contributing factor to the marked sensitivity of drug oxidation to hypoxia. Livers (N = 7) were each perfused for 130 min with 2 micrograms/mL (+)-propranolol, a drug metabolized almost entirely by oxidation in the rat. The direction of flow was reversed after 60 min, the order of flow direction being randomized. Normal oxygenation was used during the first 30 min of antegrade and of retrograde perfusion, but in the second 30 min perfusate was equilibrated with a N2/O2 mixture designed to reduce hepatic oxygen delivery by half. During normal oxygenation there was no significant difference between antegrade and retrograde perfusion in hepatic oxygen delivery and physiological parameters such as oxygen consumption and extraction, perfusion pressure and bile flow. During hypoxia, mean oxygen delivery was slightly lower with retrograde perfusion (retrograde: mean = 2.37 mumol/min/g liver, range = 1.56-3.17; antegrade: mean = 2.90 mumol/min/g liver, range = 1.96-4.08; P = 0.04), but there was no significant difference in physiological parameters within each liver (P > 0.05). Propranolol clearance during normal oxygenation was similar to the perfusion rate (10 mL/min) and was the same for both directions of perfusion (antegrade 9.88 +/- 0.07 mL/min, retrograde 9.88 +/- 0.13 mL/min, P > 0.05). Hypoxia reduced propranolol clearance substantially, but the decrease was significantly greater with antegrade perfusion (5.65 +/- 1.89 mL/min) than with retrograde perfusion (6.76 +/- 1.95 mL/min, P = 0.014). Oxidative drug metabolism is located primarily in the centrilobular zone and sinusoidal oxygen concentration is lowest in the "downstream" zone with both antegrade and retrograde perfusion. These findings suggest that the centrilobular location of propranolol metabolism may influence the effect of hypoxia on propranolol elimination, but is not a major contributor to the marked sensitivity of propranolol elimination to hypoxia antegrade perfusion.