994 resultados para Wheat products
Resumo:
Este trabalho tem como objetivos apresentar de forma sucinta o funcionamento do modelo CERES-Wheat inserido na plataforma DSSAT 3.5, assim como apresentar os resultados obtidos das simulações realizadas com o modelo e os observados em experimento de campo, em especial a sua capacidade de detectar os efeitos da aplicação de N sob a fenologia e produtividade de grãos do trigo sob irrigação.
Resumo:
http://www.archive.org/details/somebyproductsof013993mbp
Resumo:
We demonstrate that if two probability distributions D and E of sufficiently small min-entropy have statistical difference ε, then the direct-product distributions D^l and E^l have statistical difference at least roughly ε\s√l, provided that l is sufficiently small, smaller than roughly ε^{4/3}. Previously known bounds did not work for few repetitions l, requiring l>ε^2.
Resumo:
In this PhD study, mathematical modelling and optimisation of granola production has been carried out. Granola is an aggregated food product used in breakfast cereals and cereal bars. It is a baked crispy food product typically incorporating oats, other cereals and nuts bound together with a binder, such as honey, water and oil, to form a structured unit aggregate. In this work, the design and operation of two parallel processes to produce aggregate granola products were incorporated: i) a high shear mixing granulation stage (in a designated granulator) followed by drying/toasting in an oven. ii) a continuous fluidised bed followed by drying/toasting in an oven. In addition, the particle breakage of granola during pneumatic conveying produced by both a high shear granulator (HSG) and fluidised bed granulator (FBG) process were examined. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. It was observed that the least amount of breakage occurred in the straight pipe while the most breakage occurred at 90° bend pipe. Moreover, lower levels of breakage were observed in two 45° bend pipe than the 90° bend vi pipe configuration. In general, increasing the impact angle increases the degree of breakage. Additionally for the granules produced in the HSG, those produced at 300 rpm have the lowest breakage rates while the granules produced at 150 rpm have the highest breakage rates. This effect clearly the importance of shear history (during granule production) on breakage rates during subsequent processing. In terms of the FBG there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. A population balance model was developed to analyse the particle breakage occurring during pneumatic conveying. The population balance equations that govern this breakage process are solved using discretization. The Markov chain method was used for the solution of PBEs for this process. This study found that increasing the air velocity (by increasing the air pressure to the rig), results in increased breakage among granola aggregates. Furthermore, the analysis carried out in this work provides that a greater degree of breakage of granola aggregates occur in line with an increase in bend angle.
Resumo:
Oxysterols are products of cholesterol oxidation, which may be produced endogenously or may be absorbed from the diet where they are commonly found in foods of animal origin. Oxysterols are known to be cyctotoxic to cells in culture and mode of toxicity has been identified as apoptosis in certain cell lines. The cytotoxicity of the oxysterols 25-hydroxycholesterol (25-OH) and 7β-hydroxycholesterol (7β-OH) was examined in two human cell lines, HepG2, a hepatoma cell line, and U937, a monocytic cell line. Both 25-OH and 7β-OH were cytotoxic to the HepG2 cell line but apoptotic cells were not detected and it was concluded that cells underwent necrosis. 25-OH was not cytotoxic to the U937 cell line but it was found to have a cytostatic effect. 7β-OH was shown to induce apoptosis in the U937 line. The mechanism of oxysterol-induced apoptosis has not yet been fully elucidated, however the generation of an oxidative stress and the depletion of glutathione have been associated with the initial stages of the apoptotic process. The concentration of cellular antioxidant enzyme, superoxide dismutase (SOD) was increased in association with 7β-OH induced apoptosis in the U937 cell line. There was no change in the glutathione concentration or the SOD activity of HepG2 cells, which underwent necrosis in the presence of 7β-OH. Many apoptotic pathways center on the activation of caspase-3, which is the key executioner protease of apoptosis. Caspase-3 activity was also shown to increase in association with 7β-OH-induced apoptosis in U937 cells but there was no significant increase in caspase-3 activity in HepG2 cells. DNA fragmentation is regarded as the biochemical hallmark of apoptosis, therefore the comet assay as a measure of DNA fragmentation was assessed as a measure of apoptosis. The level of DNA fragmentation induced by 7β-OH, as measured using the comet assay, was similar for both cell lines. Therefore, it was concluded that the comet assay could not be used to distinguish between 7β-OH-induced apoptosis in U937 cells and 7β-OH-induced necrosis in HepG2 cells. The cytotoxicity and apoptotic potency of oxysterols 25-OH, 7β-OH, cholesterol- 5a,6a-epoxide (a-epoxide), cholesterol-5β,6β-epoxide (β-epoxide), 19-hydroxy-cholesterol (19-OH), and 7-ketocholesterol (7-keto) was compared in the U937 cell line. 7 β-OH, β-epoxide and 7-keto were found to induce apoptosis in U937 cells. 7β-OH-induced apoptosis was associated with a decrease in the cellular glutathione concentration and an increase in SOD activity, 7-keto and β-epoxide did not affect the glutathione concentration or the SOD activity of the cells.a-Epoxide, 19-OH and 25-OH were not cytotoxic to the U937 cell line.
Resumo:
Marine sponges have been an abundant source of new metabolites in recent years. The symbiotic association between the bacteria and the sponge has enabled scientists to access the bacterial diversity present within the bacterial/sponge ecosystem. This study has focussed on accessing the bacterial diversity in two Irish coastal marine sponges, namely Amphilectus fucorum and Eurypon major. A novel species from the genus Aquimarina has been isolated from the sponge Amphilectus fucorum. The study has also resulted in the identification of an α–Proteobacteria, Pseudovibrio sp. as a potential producer of antibiotics. Thus a targeted based approach to specifically cultivate Pseudovibrio sp. may prove useful for the development of new metabolites from this particular genus. Bacterial isolates from the marine sponge Haliclona simulans were screened for anti–fungal activity and one isolate namely Streptomyces sp. SM8 displayed activity against all five fungal strains tested. The strain was also tested for anti–bacterial activity and it showed activity against both against B. subtilis and P. aeruginosa. Hence a combinatorial approach involving both biochemical and genomic approaches were employed in an attempt to identify the bioactive compounds with these activities which were being produced by this strain. Culture broths from Streptomyces sp. SM8 were extracted and purified by various techniques such as reverse–phase HPLC, MPLC and ash chromatography. Anti–bacterial activity was observed in a fraction which contained a hydroxylated saturated fatty acid and also another compound with a m/z 227 but further structural elucidation of these compounds proved unsuccessful. The anti–fungal fractions from SM8 were shown to contain antimycin–like compounds, with some of these compounds having different retention times from that of an antimycin standard. A high–throughput assay was developed to screen for novel calcineurin inhibitors using yeast as a model system and three putative bacterial extracts were found to be positive using this screen. One of these extracts from SM8 was subsequently analysed using NMR and the calcineurin inhibition activity was con rmed to belong to a butenolide type compound. A H. simulans metagenomic library was also screened using the novel calcineurin inhibitor high–throughput assay system and eight clones displaying putative calcineurin inhibitory activity were detected. The clone which displayed the best inhibitory activity was subsequently sequenced and following the use of other genetic based approaches it became clear that the inhibition was being caused by a hypothetical protein with similarity to a hypothetical Na+/Ca2+ exchanger protein. The Streptomyces sp. SM8 genome was sequenced from a fragment library using Roche 454 pyrosequencing technology to identify potential secondary metabolism clusters. The draft genome was annotated by IMG/ER using the Prodigal pipeline. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMPN00000000. The genome contains genes which appear to encode for several polyketide synthases (PKS), non–ribosomal peptide synthetases (NRPS), terpene and siderophore biosynthesis and ribosomal peptides. Transcriptional analyses led to the identification of three hybrid clusters of which one is predicted to be involved in the synthesis of antimycin, while the functions of the others are as yet unknown. Two NRPS clusters were also identified, of which one may be involved in gramicidin biosynthesis and the function of the other is unknown. A Streptomyces sp. SM8 NRPS antC gene knockout was constructed and extracts from the strain were shown to possess a mild anti–fungal activity when compared to the SM8 wild–type. Subsequent LCMS analysis of antC mutant extracts confirmed the absence of the antimycin in the extract proving that the observed anti–fungal activity may involve metabolite(s) other than antimycin. Anti–bacterial activity in the antC gene knockout strain against P. aeruginosa was reduced when compared to the SM8 wild–type indicating that antimycin may be contributing to the observed anti–bacterial activity in addition to the metabolite(s) already identified during the chemical analyses. This is the first report of antimycins exhibiting anti–bacterial activity against P. aeruginosa. One of the hybrid clusters potentially involved in secondary metabolism in SM8 that displayed high and consistent levels of gene–expression in RNA studies was analysed in an attempt to identify the metabolite being produced by the pathway. A number of unusual features were observed following bioinformatics analysis of the gene sequence of the cluster, including a formylation domain within the NRPS cluster which may add a formyl group to the growing chain. Another unusual feature is the lack of AT domains on two of the PKS modules. Other unusual features observed in this cluster is the lack of a KR domain in module 3 of the cluster and an aminotransferase domain in module 4 for which no clear role has been hypothesised.
Resumo:
Coeliac disease is one of the most common food intolerances worldwide and at present the gluten free diet remains the only suitable treatment. A market overview conducted as part of this thesis on nutritional and sensory quality of commercially available gluten free breads and pasta showed that improvements are necessary. Many products show strong off-flavors, poor mouthfeel and reduced shelf-life. Since the life-long avoidance of the cereal protein gluten means a major change to the diet, it is important to also consider the nutritional value of products intending to replace staple foods such as bread or pasta. This thesis addresses this issue by characterising available gluten free cereal and pseudocereal flours to facilitate a better raw material choice. It was observed that especially quinoa, buckwheat and teff are high in essential nutrients, such as protein, minerals and folate. In addition the potential of functional ingredients such as inulin, β-glucan, HPMC and xanthan to improve loaf quality were evaluated. Results show that these ingredients can increase loaf volume and reduce crumb hardness as well as rate of staling but that the effect diverges strongly depending on the bread formulation used. Furthermore, fresh egg pasta formulations based on teff and oat flour were developed. The resulting products were characterised regarding sensory and textural properties as well as in vitro digestibility. Scanning electron and confocal laser scanning microscopy was used throughout the thesis to visualise structural changes occurring during baking and pasta making
Resumo:
Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).
Resumo:
The main objective of this thesis is to outline the synthetic chemistry involved in the preparation of a range of novel lanostane and cholestane derivatives, and subsequent investigation into their biological activity in cancer cells. The biological results obtained throughout the project have driven the strategic synthesis of new compounds, in an effort to optimise the anti cancer potential of lanostane and cholestane derivatives. The first chapter begins with an overview of steroidal compounds and details a literature review of the natural sources of these moieties, as well as their biosynthesis and reported synthetic derivatives. The biological activity of interesting natural and synthetic analogues is also discussed. In addition, an insight into some currently prescribed pharmaceutical compounds, with functional groups relevant to this project, is presented. The second chapter discusses the methods employed for the synthesis of these novel lanostane and cholestane derivatives, and comprises three main sections. Firstly, various oxidation products of lanosterol are synthesised, mainly via epoxidations of the C-8,9 and C- 24,25 alkenes, and also allylic oxidations at these positions. Secondly, amine derivatives of lanosterol are formed by cleaving the lanostane side chain, thereby yielding a new cholestane nucleus, and performing several reductive aminations on the resulting key aldehyde intermediates. Various amines such as piperidine, morpholine, diethylamine and aniline are employed in the reductive amination reactions to yield novel cholestane steroids with amine side chains. Finally, starting from stigmasterol and proceeding with the same methodology of cleaving the steroidal side chain and subsequently performing reductive aminations, novel cholestane derivatives of the biologically active amines are synthesised. The cytotoxicity of these compounds against CaCo-2 and U937 cell lines is presented in terms of percentage viability of cells, IC50 value and apoptosis. The MTT assay is used to determine the percentage viability of cells, and the IC50 data is generated from the MTT results. Apoptosis is measured in terms of fold increase relative to a carrier control. In summary, the compounds formed are discussed in terms of chemical synthesis, spectroscopic interpretation and biological activity. The main reaction pathways involved in the chemistry within this project are various oxidations and reductive amination. The final chapter is a detailed account of the full experimental procedures for the compounds synthesised during this work, including characterisation using spectroscopic and analytical data.
Resumo:
The physicochemical and nutritional properties of two fruit by-products were initially studied. Apple pomace (AP) contained a high level of fibre and pectin. The isolated AP pectin had a high level of methylation which developed viscous pastes. Orange pomace also had high levels of fibre and pectin, and it was an abundant source of minerals such as potassium and magnesium. Due to the fibrous properties of orange pomace flour, proofing and water addition were studied in a bread formulation. When added at levels greater than 6%, the loaf volume decreased. An optimised formulation and proofing time was derived using the optimisation tool; these consisted of 5.5% orange pomace, 94.6% water inclusion and with 49 minutes proofing. These optimised parameters doubled the total dietary fibre content of the bread compared to the original control. Pasting results showed how orange pomace inclusions reduced the final viscosity of the batter, reducing the occurrence of starch gelatinisation. Rheological properties i.e. the storage modulus (G') and complex modulus (G*) increased in the orange pomace batter compared to the control batter. This demonstrates how the orange pomace as an ingredient improved the robustness of the formulation. Sensory panellists scored the orange pomace bread comparably to the control bread. Milled apple pomace was studied as a potential novel ingredient in an extruded snack. Parameters studied included apple pomace addition, die head temperature and screw speed. As screw speed increased the favourable extrudate characteristics such as radical expansion ratio, porosity and specific volume decreased. The inclusion of apple pomace had a negative effect on extrudate characteristics at levels greater than 8% addition. Including apple pomace reduced the hardness and increased the crispiness of the snack. The optimised and validated formulation and extrusion process contained the following parameters: 7.7% apple pomace, 150°C die head temperature and a screw speed of 69 rpm.
Resumo:
The principal objective of this thesis was to investigate the ability of reversible optical O2 sensors to be incorporated into food/beverage packaging systems to continuously monitor O2 levels in a non-destructive manner immediately postpackaging and over time. Residual levels of O2 present in packs can negatively affect product quality and subsequently, product shelf-life, especially for O2-sensitive foods/beverages. Therefore, the ability of O2 sensors to continuously monitor O2 levels present within food/beverage packages was considered commercially relevant in terms of identifying the consequences of residual O2 on product safety and quality over time. Research commenced with the development of a novel range of O2 sensors based on phosphorescent platinum and palladium octaethylporphyrin-ketones (OEPk) in nano-porous high density polyethylene (HDPE), polypropylene (PP) polytetrafluoroethylene (PTFE) polymer supports. Sensors were calibrated over a temperature range of -10°C to +40°C and deemed suitable for food and beverage packaging applications. This sensor technology was used and demonstrated itself effective in determining failures in packaging containment. This was clearly demonstrated in the packaging of cheese string products. The sensor technology was also assessed across a wide range of packaged products; beer, ready-to-eat salad products, bread and convenience-style, muscle-based processed food products. The O2 sensor technology performed extremely well within all packaging systems. The sensor technology adequately detected O2 levels in; beer bottles prior to and following pasteurisation, modified atmosphere (MA) packs of ready-to-eat salad packs as respiration progressed during product storage and MA packs of bread and convenience-style muscle-based products as mycological growth occurred in food packs over time in the presence and absence of ethanol emitters. The use of the technology, in conjunction with standard food quality assessment techniques, showed remarkable usefulness in determining the impact of actual levels of O2 on specific quality attributes. The O2 sensing probe was modified, miniaturised and automated to screen for the determination of total aerobic viable counts (TVC) in several fish species samples. The test showed good correlation with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness with respect to variation of key assay parameters (probe concentration and pipetting volume). Overall, the respirometric fish TVC test was simple to use, possessed a dynamic microbial range (104-107 cfu/g sample), had an accuracy of +/- one log(cfu/g sample) and was rapid. Its ability to assess highly perishable products such as fish for total microbial growth in <12 hr demonstrates commercial potential.
Resumo:
M66 an X-ray induced mutant of winter wheat (Triticum aestivum) cv. Guardian exhibits broad-spectrum resistance to powdery mildew (Blumeria graminis f. sp. tritici), yellow rust (Puccinia striiformis f. sp. tritici), and leaf rust (Puccinia recondita f. sp. tritici), along with partial resistance to stagnonospora nodorum blotch (caused by the necrotroph Stagonosporum nodorum) and septoria tritici blotch (caused by the hemibiotroph Mycosphaerella graminicola) compared to the parent plant ‘Guardian’. Analysis revealed that M66 exhibited no symptoms of infection following artificial inoculation with Bgt in the glasshouse after adult growth stage (GS 45). Resistance in M66 was associated with widespread leaf flecking which developed during tillering. Flecking also occurred in M66 leaves without Bgt challenge; as a result grain yields were reduced by approximately 17% compared to ‘Guardian’ in the absence of disease. At the seedling stage, M66 exhibited partial resistance. M66, along with Tht mutants (Tht 12, Tht13), also exhibit increased tolerance to environmental stresses (abiotic), such as drought and heat stress at seedling and adult growth stages, However, adult M66 exhibited increased susceptibility to the aphid Schizaphis graminum compared to ‘Guardian’. Resistance to Bgt in M66 was characterized with increased and earlier H2O2 accumulation at the site of infection which resulted in increased papilla formation in epidermal cells, compared to ‘Guardian’. Papilla formation was associated with reduced pathogen ingress and haustorium formation, indicating that the primary cause of resistance in M66 was prevention of pathogen penetration. Heat treatment at 46º C prior to challenge with Bgt also induced partial disease resistance to Blumeria graminis f. sp. tritici in ‘Guardian’ and M66 seedlings. This was characterized by a delay in primary infection, due to increased production of ROS species, such as hydrogen peroxide, ROS-scavenging enzymes and Hsp70, resulting in cross-linking of cell wall components prior to inoculation. This actively prevented the fungus from penetrating the epidermal cell wall. Proteomics analysis using 2-D gel electrophoresis identified primary and secondary disease resistance effects in M66 including detection of ROS scavenging enzymes (4, 24 hai), such as ascorbate peroxidase and a superoxidase dismutase isoform (CuZnSOD) in M66 which were absent from ‘Guardian’. Chitinase (PR protein) was also upregulated (24 hai) in M66 compared to ‘Guardian’.Monosomic and ditelosomic analysis of M66 revealed that the mutation in M66 is located on the long arm of chromosome 2B (2BL). Chromosome 2BL is known to have key genes involved in resistance to pathogens such as those causing stripe rust and powdery mildew. The TaMloB1 gene, an orthologue of the barley Mlo gene, is also located on chromosome 2BL. Sanger sequencing of part of the coding sequence revealed no deletions in the TaMloB1 gene between ‘Guardian’ and M66.
Resumo:
The category of ‘religion’ as contemporary scholarship has demonstrated is a fairly recent innovation, dating back only a few hundred years in Western thought, and ‘world religions’ as we think of it and as we teach it is an even more recent category, emerging out of European colonialism. Thus the academic study of religion is both the product and, at times, the agent of colonial modes of knowledge. And yet, it is perhaps because ‘religion’ continues to be invented and reinvented through connections across cultures that investigating the work of religious ideas and practices offers such fruitful possibilities for understanding the work of culture and power. This article investigates religion and the study of religion as a mode of anti-colonial practice, seeking to understand how each have the potential to cross boundaries, build bridges and produce critical insights into assumptions and worldviews too often taken for granted.
Resumo:
Fish bone assemblages are described that were recently discovered in the storage area of two rooms, dated to the 7th century AD, from the monastery of Bawit, Egypt. The species composition, the reconstructed sizes of the fish and the find contexts show that this material represents pickled fish (salsamenta). This product was made in one case of medium-sized Clarias catfish, whereas another assemblage, found inside an amphora, consisted of small-sized fish, mainly cyprinids and alestiids. The latter product was stored in a Late Roman Amphora 5/6 of Palestinian origin, traditionally considered as a container for wine. The amphora was clearly re-used since the fish found in it are Nilotic species which excludes that the salsamenta came from outside Egypt. A few additional finds of fish inside amphorae were available, but due to the low number of bones it was unclear if salted fish products were stored in them. Textual information provided by ostraca and papyri from the same site shows that the monks exerted fishing activities themselves and also suggests that the production of pickled fish took place locally. One of the two Nilotic fish taxa (Labeo) that is specifically mentioned by written evidence is the most common ingredient found in the amphora with abundant fish remains. The paper ends with a brief summary of other faunal evidence for salted fish products from monastic and other historic sites in Egypt.