813 resultados para Weighted Rating Scale
Resumo:
In this paper we describe the use and evaluation of CubIT, a multi-user, very large-scale presentation and collaboration framework. CubIT is installed at the Queensland University of Technology’s (QUT) Cube facility. The “Cube” is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, use and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT are implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. The evaluation reveals issues around the public use and functional scope of the system.
Resumo:
The Mekong is the most productive river fishery in the world, and such as, the Mekong River Basin (MRB) is very important to very large human populations across the region as a source of revenue (through fishing and marketing of aquatic resources products) and as the major source for local animal protein. Threats to biodiversity in the MRB, either to the fishery sector itself or to other sectors are a major concern, even though currently, fisheries across this region are still very productive. If not managed properly however, fish population declines will cause significant economic impact and affect livelihoods of local people and will have a major impact on food security and nutrition. Biodiversity declines will undoubtedly affect food security, income and socio-economic status of people in the MRB that depend on aquatic resources. This is an indicator of unsustainable development and hence should be avoided. Genetic diversity (biodiversity) that can be measured using techniques based on DNA markers; refers to variation within and among populations within the same species or reproductive units. In a population, new genetic variation is generated by sexual recombination contributed by individuals with mutations in genes and chromosomes. Over time, populations of a species that are not reproducing together will diverge as differential impacts of selection and genetic drift change their genetic attributes. For mud carp (Henicorhynchus spp.), understanding the status of breeding units in the MRB will be important for their long term persistence, sustainability and for implementing effective management strategies. Earlier analysis of stock structure in two economically important mud carp species (Henicorhynchus siamensis and H. lobatus) in the MRB completed with mtDNA markers identified a number of populations of both species where gene flow had apparently been interrupted or reduced but applying these data directly to management unit identification is potentially compromised because information was only available about female dispersal patterns. The current study aimed to address this problem and to fully assess the extent of current gene flow (nDNA) and reproductive exchange among selected wild populations of two species of carp (Henicorhynchus spp.) of high economic importance in the MRB using combined mtDNA and nDNA markers. In combination, the data can be used to define effective management units for each species. In general, nDNA diversity for H. lobatus (with average allelic richness (A) 7.56 and average heterozygosity (Ho) 0.61) was very similar to that identified for H. siamensis (A = 6.81 and Ho = 0.75). Both mud carp species show significant but low FST estimates among populations as a result of lower genetic diversity among sampled populations compared with genetic diversity within populations that may potentially mask any 'real' population structure. Overall, population genetic structure patterns from mtDNA and nDNA in both Henicorhynchus species were largely congruent. Different population structures however, were identified for the two Henicorhynchus species across the same geographical area. Apparent co-similarity in morphology and co-distribution of these two relatively closely related species does not apparently imply parallel evolutionary histories. Differences in each species population structure likely reflect historical drainage rearrangement of the Mekong River. The data indicate that H. siamensis is likely to have occupied the Mekong system for much longer than has H. lobatus in the past. Two divergent stocks were identified for H. lobatus in the MRB below the Khone Falls while a single stock had been evident in the earlier mtDNA study. This suggests that the two Henicorhynchus species may possess different life history traits and that different patterns of gene flow has likely influenced modern genetic structure in these close congeners. In combination, results of the earlier mtDNA and the current study have implications for effective management of both Henicorhynchus species across the MRB. Currently, both species are essentially treated as a single management unit in this region. This strategy may be appropriate for H. lobatus as a single stock was evident in the main stream of the MRB, but may not be appropriate for H. siamensis as more than a single stock was identified across the same range for this species. Management strategies should consider this difference to conserve overall biodiversity (local discrete populations) and this will include maintaining natural habitat and migration pathways, provision of fish sanctuaries (refuges) and may also require close monitoring of any stock declines, a signal that may require effective recovery strategies.
Resumo:
We present a mini-scale method for nuclear run-on transcription assay. In our method, all the centrifuge steps can be carried out by using micro-tubes for short time (5 min each) throughout the process, including isolation of transcriptionally active nuclei and purification of labeled RNA after synthesis of RNA in isolated nuclei. The assay can be performed using a small amount of plant tissue, which enables analysis of developmental changes in transcriptional status of given genes in a single individual plant. Successful results were obtained using the tissues of flower and leaf of petunia and embryo of pea, suggesting that the method is potentially applicable to a variety of plant tissues.
Resumo:
Aim. This paper is a report of a development and validation of a new job performance scale based on an established job performance model. Background. Previous measures of nursing quality are atheoretical and fail to incorporate the complete range of behaviours performed. Thus, an up-to-date measure of job performance is required for assessing nursing quality. Methods. Test construction involved systematic generation of test items using focus groups, a literature review, and an expert review of test items. A pilot study was conducted to determine the multidimensional nature of the taxonomy and its psychometric properties. All data were collected in 2005. Findings. The final version of the nursing performance taxonomy included 41 behaviours across eight dimensions of job performance. Results from preliminary psychometric investigations suggest that the nursing performance scale has good internal consistency, good convergent validity and good criterion validity. Conclusion. The findings give preliminary support for a new job performance scale as a reliable and valid tool for assessing nursing quality. However, further research using a larger sample and nurses from a broader geographical region is required to cross-validate the measure. This scale may be used to guide hospital managers regarding the quality of nursing care within units and to guide future research in the area.
Resumo:
Accurate and detailed measurement of an individual's physical activity is a key requirement for helping researchers understand the relationship between physical activity and health. Accelerometers have become the method of choice for measuring physical activity due to their small size, low cost, convenience and their ability to provide objective information about physical activity. However, interpreting accelerometer data once it has been collected can be challenging. In this work, we applied machine learning algorithms to the task of physical activity recognition from triaxial accelerometer data. We employed a simple but effective approach of dividing the accelerometer data into short non-overlapping windows, converting each window into a feature vector, and treating each feature vector as an i.i.d training instance for a supervised learning algorithm. In addition, we improved on this simple approach with a multi-scale ensemble method that did not need to commit to a single window size and was able to leverage the fact that physical activities produced time series with repetitive patterns and discriminative features for physical activity occurred at different temporal scales.
Resumo:
The construction and operation of infrastructure assets can have significant impact on society and the region. Using a sustainability assessment framework can be an effective means to build sustainability aspects into the design, construction and operation of infrastructure assets. The conventional evaluation processes and procedures for infrastructure projects do not necessarily measure the qualitative/quantitative effectiveness of all aspects of sustainability: environment, social wellbeing and economy. As a result, a few infrastructure sustainability rating schemes have been developed with a view to assess the level of sustainability attained in the infrastructure projects. These include: Infrastructure Sustainability (Australia); CEEQUAL (UK); and Envision (USA). In addition, road sector specific sustainability rating schemes such as Greenroads (USA) and Invest (Australia) have also been developed. These schemes address several aspects of sustainability with varying emphasis (weightings) on areas such as: use of resources; emission, pollution and waste; ecology; people and place; management and governance; and innovation. The attainment of sustainability of an infrastructure project depends largely on addressing the whole-of-life environmental issues. This study has analysed the rating schemes’ coverage of different environmental components for the road infrastructure under the five phases of a project: material, construction, use, maintenance and end-of-life. This is based on a comprehensive life cycle assessment (LCA) system boundary. The findings indicate that there is a need for the schemes to consider key (high impact) life cycle environmental components such as traffic congestion during construction, rolling resistance due to surface roughness and structural stiffness of the pavement, albedo, lighting, and end-of-life management (recycling) to deliver sustainable road projects.
Resumo:
Intended to bridge the gap between the latest methodological developments and cross-cultural research, this interdisciplinary resource presents the latest strategies for analyzing cross-cultural data. Techniques are demonstrated through the use of applications that employ cross national data sets such as the latest European Social Survey. With an emphasis on the generalized latent variable approach, internationally?prominent researchers from a variety of fields explain how the methods work, how to apply them, and how they relate to other methods presented in the book. Syntax and graphical and verbal explanations of the techniques are included. [from publisher's website]
Resumo:
Although integrated marketing communication (IMC) has progressed towards midrange maturity level, its full-scale adoption has been impeded by a lack of consensus on its defining constructs. The purpose of this study is to move from abstraction to define the construct of strategic integration (SI) and develop this into a management tool, thus making an important contribution to both the theory and practice of IMC. Drawing from both IMC and strategic management literature, the construct of SI is operationalised into a number of key factors and a well-cited management model, Fuchs’ ‘integration valuator’ is explored as the starting point of a measurement tool for IMC. To do this, a Delphi study invites the scrutiny of an expert panel of world-leading IMC researchers and practitioners. The panel validated the model construction process,redefined overarching constructs and key factors with a high degree of consensus, supported a process measure, suggested a weighted evaluation measure and recognised the importance of developing such a measure. They delivered clear and consistent imperatives guiding model development. The result is a measure of SI that evaluates organisational proficiency and diagnoses the integration of IMC campaigns. It also advances theory by providing a better understanding of the construct of SI.
Resumo:
An Australian green power (AGP) company produces energy from burning biomass from the sugar industry and recycled wood waste, however alkali in biomass is released into a recirculating stream that forms a scale as it becomes more concentrated. This investigation has shown that the addition of Bayer liquor (alumina waste residue) successfully removes scale-forming species from the recirculating stream and thus has the potential to reduce the rate of scaling. Characterisation of the scale and Bayer precipitates has been performed using X-ray diffraction (XRD), infrared spectroscopy (IR) and inductively coupled plasma optical emission spectroscopy (ICP-OES).
Resumo:
Dietitians have reported a lack of confidence in counselling clients with mental health issues. Standardised tools are needed to evaluate programs aiming to improve confidence. The Dietetic Confidence Scale (DCS) was developed to assess dietitians’perception of their capability about working with clients experiencing depression. Exploratory research revealed a 13-item, two-factor model. Dietetic confidence was associated with: 1) Confidence using the Nutrition Care Process; and 2) Confidence in Advocacy for Self-care and Client-care. This study aimed to validate the DCS using this two-factor model.The DCS was administered to 458 dietitians. Confirmatory factor analysis (CFA) assessed the scale’s psychometric validity. Reliability was measured using Cronbach’s alpha (α) co-efficient. CFA results supported the hypothesised two-factor, 13-item model. The Good Fit Index (GFI = 0.95) indicated a strong fit. Item-factor correlations ranged from r = 0.50 to 0.89. The overall scale and subscales showed good reliability (α = 0.93 to 0.76). This is the first study to validate an instrument that measures dietetic confidence about working with clients experiencing depression. The DCS can be used to measure changes in perceived confidence and identify where further training, mentoring or experience is needed. The findings also suggest that initiatives aimed at building dietitians' confidence about working with clients experiencing depression, should focus on improving client-focused nutrition care, foster advocacy, reflective practice, mentoring and encourage professional support networks. Avenues for future research include further validity and reliability testing to expand the generalisability of results; and modifying the scale for other disease or client populations.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
Data associated with germplasm collections are typically large and multivariate with a considerable number of descriptors measured on each of many accessions. Pattern analysis methods of clustering and ordination have been identified as techniques for statistically evaluating the available diversity in germplasm data. While used in many studies, the approaches have not dealt explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions). To consider the application of these techniques to germplasm evaluation data, 11328 accessions of groundnut (Arachis hypogaea L) from the International Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the rainy and post-rainy growing seasons were used. The ordination technique of principal component analysis was used to reduce the dimensionality of the germplasm data. The identification of phenotypically similar groups of accessions within large scale data via the computationally intensive hierarchical clustering techniques was not feasible and non-hierarchical techniques had to be used. Finite mixture models that maximise the likelihood of an accession belonging to a cluster were used to cluster the accessions in this collection. The patterns of response for the different growing seasons were found to be highly correlated. However, in relating the results to passport and other characterisation and evaluation descriptors, the observed patterns did not appear to be related to taxonomy or any other well known characteristics of groundnut.
Resumo:
As a sequel to a paper that dealt with the analysis of two-way quantitative data in large germplasm collections, this paper presents analytical methods appropriate for two-way data matrices consisting of mixed data types, namely, ordered multicategory and quantitative data types. While various pattern analysis techniques have been identified as suitable for analysis of the mixed data types which occur in germplasm collections, the clustering and ordination methods used often can not deal explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions) with incomplete information. However, it is shown that the ordination technique of principal component analysis and the mixture maximum likelihood method of clustering can be employed to achieve such analyses. Germplasm evaluation data for 11436 accessions of groundnut (Arachis hypogaea L.) from the International Research Institute of the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the post-rainy season and five ordered multicategory descriptors were used. Pattern analysis results generally indicated that the accessions could be distinguished into four regions along the continuum of growth habit (or plant erectness). Interpretation of accession membership in these regions was found to be consistent with taxonomic information, such as subspecies. Each growth habit region contained accessions from three of the most common groundnut botanical varieties. This implies that within each of the habit types there is the full range of expression for the other descriptors used in the analysis. Using these types of insights, the patterns of variability in germplasm collections can provide scientists with valuable information for their plant improvement programs.
Resumo:
The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production.
Resumo:
Although frontline employees' bending of organizational rules and norms for customers is an important phenomenon, marketing scholars to date only broadly describe over-servicing behaviors and provide little distinction among deviant behavioral concepts. Drawing on research on pro-social and pro-customer behaviors and on studies of positive deviance, this paper develops and validates a multi-faceted, multi-dimensional construct term customer-oriented deviance. Results from two samples totaling 616 frontline employees (FLEs) in the retail and hospitality industries demonstrate that customer-oriented deviance is a four-dimensional construct with sound psychometric properties. Evidence from a test of a theoretical model of key antecedents establishes nomological validity with empathy/perspective-taking, risk-taking propensity, role conflict, and job autonomy as key predictors. Results show that the dimensions of customer-oriented deviance are distinct and have significant implications for theory and practice.