943 resultados para Water quality monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrio vulnificus is a gram-negative pathogenic bacterium endemic to coastal waters worldwide, and a leading cause of seafood related mortality. Because of human health concerns, understanding the ecology of the species and potentially predicting its distribution is of great importance. We evaluated and applied a previously published qPCR assay to water samples (n = 235) collected from the main-stem of the Chesapeake Bay (2007 – 2008) by Maryland and Virginia State water quality monitoring programs. Results confirmed strong relationships between the likelihood of Vibrio vulnificus presence and both temperature and salinity that were used to develop a logistic regression model. The habitat model demonstrated a high degree of concordance (93%), and robustness as subsequent bootstrapping (n=1000) did not change model output (P > 0.05). We forced this empirical habitat model with temperature and salinity predictions generated by a regional hydrodynamic modeling system to demonstrate its utility in future pathogen forecasting efforts in the Chesapeake Bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct method for measuring the 5-day biochemical oxygen demand (BODS) of aquaculture samples that does not require sample dilution or bacterial and nutrient enrichment was evaluated. The regression coefficient (R-2) between the direct method and the standard method for the analyses of 32 samples from catfish ponds was 0.996. The slope of the regression line did not differ from 1.0 or the Y-intercept from 0.0 at P = 0.05. Thus, there was almost perfect agreement between the two methods. The control limits (three standard deviations of the mean) for a standard solution containing 15 mg/L each of glutamic acid and glucose were 17.4 and 20.4 mg/L. The precision of the two methods, based on eight replicate analyses of four pond water samples did not differ at P = 0.05. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sauze, C. and Neal, M. 'An Autonomous Sailing Robot for Ocean Observation', in proceedings of TAROS 2006, Guildford, UK, Sept 4-6th 2006, pages 190-197.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the study of interactions between pathogenic microorganisms and their environment is part of microbial ecology, this chapter reviews the different types of human pathogens found in the environment, the different types of fecal indicators used in water quality monitoring, the biotic and abiotic factors affecting the survival and the infectivity of pathogenic microorganisms during their transportation in the environment, and the methods presently available to detect rare microorganisms in environmental samples. This chapter exclusively focuses on human pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective implementation of the Water Framework Directive requires a reappraisal of conventional approaches to water quality monitoring. Quantifying the impact of domestic wastewater treatment systems (DWWTS) in Irish catchments is further complicated by high levels of natural heterogeneity. This paper presents a numerical model that couples attenuation to flow along different hydrological pathways contributing to river discharge; this permits estimation of the impact of DWWTS to overall nutrient fluxes under a range of geological conditions. Preliminary results suggest high levels of attenuation experienced
before DWWTS effluent reaches bedrock play a significant role in reducing its ecological impact on aquatic receptors. Conversely, low levels of attenuation in systems discharging directly to surface water may affect water quality more significantly, particularly during prolonged dry periods in areas underlain by low productivity aquifers (>60% of Ireland), where dilution capacity is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La pollution microbienne des eaux récréatives peut engendrer un risque pour la santé des populations exposées. La contamination fécale de ces eaux représente une composante importante de ce risque, notamment par la présence possible d’agents pathogènes et par l’exposition à des micro-organismes résistants aux antimicrobiens. Les sources de pollution fécale sont multiples et incluent entre autres les activités agricoles et les productions animales. Ce projet visait donc à mieux comprendre les facteurs influençant la qualité microbiologique des eaux récréatives du Québec méridional, en ciblant le rôle possible des activités agricoles, ainsi qu`à proposer et évaluer de nouvelles sources de données pouvant contribuer à l’identification de ces facteurs. Dans un premier temps, une évaluation de la présence d’Escherichia coli résistants aux antimicrobiens dans les eaux récréatives à l’étude a été effectuée. À la lumière des résultats de cette première étude, ces eaux représenteraient une source de micro-organismes résistants aux antimicrobiens pour les personnes pratiquant des activités aquatiques, mais l’impact en santé publique d’une telle exposition demeure à déterminer. Les déterminants agroenvironnementaux associés à la présence de micro-organismes résistants aux antimicrobiens ont par la suite été explorés. Les résultats de ce chapitre suggèrent que les activités agricoles, et plus spécifiquement l’épandage de fumier liquide, seraient reliées à la contamination des eaux récréatives par des bactéries résistantes aux antimicrobiens. Le chapitre suivant visait à identifier des déterminants agroenvironnementaux temps-indépendants d’importance associés à la contamination fécale des eaux à l’étude. Différentes variables, regroupées en trois classes (activités agricoles, humaines et caractéristiques géohydrologiques), ont été explorées à travers un modèle de régression logistique multivarié. Il en est ressorti que les eaux récréatives ayant des sites de productions de ruminants à proximité, et en particulier à l’intérieur d’un rayon de 2 km, possédaient un risque plus élevé de contamination fécale. Une association positive a également été notée entre le niveau de contamination fécale et le fait que les plages soient situées à l’intérieur d’une zone urbaine. Cette composante nous permet donc de conclure qu’en regard à la santé publique, les eaux récréatives pourraient être contaminées par des sources de pollution fécale tant animales qu’humaines, et que celles-ci pourraient représenter un risque pour la santé des utilisateurs. Pour terminer, un modèle de régression logistique construit à l’aide de données issues de la télédétection et mettant en association un groupe de déterminants agroenvironnementaux et la contamination fécale des eaux récréatives a été mis au point. Ce chapitre visait à évaluer l’utilité de telles données dans l’identification de ces déterminants, de même qu`à discuter des avantages et contraintes associées à leur emploi dans le contexte de la surveillance de la qualité microbiologique des eaux récréatives. À travers cette étude, des associations positives ont été mises en évidence entre le niveau de contamination fécale des eaux et la superficie des terres agricoles adjacentes, de même qu’avec la présence de surfaces imperméables. Les données issues des images d’observation de la Terre pourraient donc constituer une valeur ajoutée pour les programmes de suivi de la qualité microbiologique de ces eaux en permettant une surveillance des déterminants y étant associés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Langmuir films of a tetracarboxylic perylene derivative and polypyrrole display condensed surface pressure isotherms that are shifted when Cu2+ ions are added to the ultrapure water subphase. These films were transferred onto interdigitated gold electrodes leading to Y-type Langmuir-Blodgett (LB) films. The electrodes modified with 5-layer LB films were immersed into a flask with ultrapure water and water containing Cu2+ ions at concentrations ranging from mM to muM. Impedance measurements indicated a distinct electrical response for the two types of films. Although the materials chosen have no specificity for ionic metals, they can be combined for detecting trace levels of Cu2+, which may be exploited in water quality monitoring. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studying the physical environment of a watershed is the basic condition for a successful planning of the riparian forest preservation, and for water production and conservation. The aims of the present study were to analyze and quantify the spatial and temporal evolution (1984 and 2010) using Landsat-5 satellite images of Cintra Stream sub-watershed, Botucatu, São Paulo State, Brazil, processed by the software IDRISI Andes, as well as to analyze the water quality through the parameters pH, EC, DO and BOD5 at 4 different sites in the years 1999, 2008 and 2009. Considering the 1076.48ha area of the sub-watershed, the pasture class of 1984 was reduced by 25.55% in 2010, resulting in an increase in the remaining classes. The most important class was native forest and reforestation since it had an increase of 5.08%, which indicates recovery of the riparian forest. Degraded areas were identified close to the inferior limit of the sub-watershed (P3 and P4), as well as local contamination (P1 and P2) with worsening of the water quality in the remaining sites in the periods 2008 and 2009. Recovery and management of the ecological succession of degraded areas and water quality monitoring at 1 and 2 sites will be necessary to reestablish the natural condition of the area studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis se desarrolla dentro del marco de las comunicaciones satelitales en el innovador campo de los pequeños satélites también llamados nanosatélites o cubesats, llamados así por su forma cubica. Estos nanosatélites se caracterizan por su bajo costo debido a que usan componentes comerciales llamados COTS (commercial off-the-shelf) y su pequeño tamaño como los Cubesats 1U (10cm*10 cm*10 cm) con masa aproximada a 1 kg. Este trabajo de tesis tiene como base una iniciativa propuesta por el autor de la tesis para poner en órbita el primer satélite peruano en mi país llamado chasqui I, actualmente puesto en órbita desde la Estación Espacial Internacional. La experiencia de este trabajo de investigación me llevo a proponer una constelación de pequeños satélites llamada Waposat para dar servicio de monitoreo de sensores de calidad de agua a nivel global, escenario que es usado en esta tesis. Es ente entorno y dadas las características limitadas de los pequeños satélites, tanto en potencia como en velocidad de datos, es que propongo investigar una nueva arquitectura de comunicaciones que permita resolver en forma óptima la problemática planteada por los nanosatélites en órbita LEO debido a su carácter disruptivo en sus comunicaciones poniendo énfasis en las capas de enlace y aplicación. Esta tesis presenta y evalúa una nueva arquitectura de comunicaciones para proveer servicio a una red de sensores terrestres usando una solución basada en DTN (Delay/Disruption Tolerant Networking) para comunicaciones espaciales. Adicionalmente, propongo un nuevo protocolo de acceso múltiple que usa una extensión del protocolo ALOHA no ranurado, el cual toma en cuenta la prioridad del trafico del Gateway (ALOHAGP) con un mecanismo de contienda adaptativo. Utiliza la realimentación del satélite para implementar el control de la congestión y adapta dinámicamente el rendimiento efectivo del canal de una manera óptima. Asumimos un modelo de población de sensores finito y una condición de tráfico saturado en el que cada sensor tiene siempre tramas que transmitir. El desempeño de la red se evaluó en términos de rendimiento efectivo, retardo y la equidad del sistema. Además, se ha definido una capa de convergencia DTN (ALOHAGP-CL) como un subconjunto del estándar TCP-CL (Transmission Control Protocol-Convergency Layer). Esta tesis muestra que ALOHAGP/CL soporta adecuadamente el escenario DTN propuesto, sobre todo cuando se utiliza la fragmentación reactiva. Finalmente, esta tesis investiga una transferencia óptima de mensajes DTN (Bundles) utilizando estrategias de fragmentación proactivas para dar servicio a una red de sensores terrestres utilizando un enlace de comunicaciones satelitales que utiliza el mecanismo de acceso múltiple con prioridad en el tráfico de enlace descendente (ALOHAGP). El rendimiento efectivo ha sido optimizado mediante la adaptación de los parámetros del protocolo como una función del número actual de los sensores activos recibidos desde el satélite. También, actualmente no existe un método para advertir o negociar el tamaño máximo de un “bundle” que puede ser aceptado por un agente DTN “bundle” en las comunicaciones por satélite tanto para el almacenamiento y la entrega, por lo que los “bundles” que son demasiado grandes son eliminados o demasiado pequeños son ineficientes. He caracterizado este tipo de escenario obteniendo una distribución de probabilidad de la llegada de tramas al nanosatélite así como una distribución de probabilidad del tiempo de visibilidad del nanosatélite, los cuales proveen una fragmentación proactiva óptima de los DTN “bundles”. He encontrado que el rendimiento efectivo (goodput) de la fragmentación proactiva alcanza un valor ligeramente inferior al de la fragmentación reactiva. Esta contribución permite utilizar la fragmentación activa de forma óptima con todas sus ventajas tales como permitir implantar el modelo de seguridad de DTN y la simplicidad al implementarlo en equipos con muchas limitaciones de CPU y memoria. La implementación de estas contribuciones se han contemplado inicialmente como parte de la carga útil del nanosatélite QBito, que forma parte de la constelación de 50 nanosatélites que se está llevando a cabo dentro del proyecto QB50. ABSTRACT This thesis is developed within the framework of satellite communications in the innovative field of small satellites also known as nanosatellites (<10 kg) or CubeSats, so called from their cubic form. These nanosatellites are characterized by their low cost because they use commercial components called COTS (commercial off-the-shelf), and their small size and mass, such as 1U Cubesats (10cm * 10cm * 10cm) with approximately 1 kg mass. This thesis is based on a proposal made by the author of the thesis to put into orbit the first Peruvian satellite in his country called Chasqui I, which was successfully launched into orbit from the International Space Station in 2014. The experience of this research work led me to propose a constellation of small satellites named Waposat to provide water quality monitoring sensors worldwide, scenario that is used in this thesis. In this scenario and given the limited features of nanosatellites, both power and data rate, I propose to investigate a new communications architecture that allows solving in an optimal manner the problems of nanosatellites in orbit LEO due to the disruptive nature of their communications by putting emphasis on the link and application layers. This thesis presents and evaluates a new communications architecture to provide services to terrestrial sensor networks using a space Delay/Disruption Tolerant Networking (DTN) based solution. In addition, I propose a new multiple access mechanism protocol based on extended unslotted ALOHA that takes into account the priority of gateway traffic, which we call ALOHA multiple access with gateway priority (ALOHAGP) with an adaptive contention mechanism. It uses satellite feedback to implement the congestion control, and to dynamically adapt the channel effective throughput in an optimal way. We assume a finite sensor population model and a saturated traffic condition where every sensor always has frames to transmit. The performance was evaluated in terms of effective throughput, delay and system fairness. In addition, a DTN convergence layer (ALOHAGP-CL) has been defined as a subset of the standard TCP-CL (Transmission Control Protocol-Convergence Layer). This thesis reveals that ALOHAGP/CL adequately supports the proposed DTN scenario, mainly when reactive fragmentation is used. Finally, this thesis investigates an optimal DTN message (bundles) transfer using proactive fragmentation strategies to give service to a ground sensor network using a nanosatellite communications link which uses a multi-access mechanism with priority in downlink traffic (ALOHAGP). The effective throughput has been optimized by adapting the protocol parameters as a function of the current number of active sensors received from satellite. Also, there is currently no method for advertising or negotiating the maximum size of a bundle which can be accepted by a bundle agent in satellite communications for storage and delivery, so that bundles which are too large can be dropped or which are too small are inefficient. We have characterized this kind of scenario obtaining a probability distribution for frame arrivals to nanosatellite and visibility time distribution that provide an optimal proactive fragmentation of DTN bundles. We have found that the proactive effective throughput (goodput) reaches a value slightly lower than reactive fragmentation approach. This contribution allows to use the proactive fragmentation optimally with all its advantages such as the incorporation of the security model of DTN and simplicity in protocol implementation for computers with many CPU and memory limitations. The implementation of these contributions was initially contemplated as part of the payload of the nanosatellite QBito, which is part of the constellation of 50 nanosatellites envisaged under the QB50 project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"The Illinois Environmental Protection Agency monitors surface waters (i.e. lakes and streams) through a variety of programs. The most extensive is the Ambient Water Quality Monitoring Network (AWQMN) which consists of 203 stream stations statewide sampled on a 6 week cycle since October 1977." -- p. 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phytotoxicity assay based on the ToxY-PAM dual-channel yield analyser has been developed and successfully incorporated into field assessments for the detection of phytotoxicants in water. As a means of further exploring the scope of the assay application and of selecting a model biomaterial to complement the instrument design, nine algal species were exposed to four chemical substances deemed of priority for water quality monitoring purposes (chlorpyrifos, copper, diuron and nonylphenol ethoxylate). Inter-species differences in sensitivity to the four toxicants varied by a factor of 1.9-100. Measurements of photosystem-II quantum yield using these nine single-celled microalgae as biomaterial corroborated previous studies which have shown that the ToxY-PAM dual-channel yield analyser is a highly sensitive method for the detection of PS-II impacting herbicides. Besides Phaeodactylum tricornutum, the previously applied biomaterial, three other species consistently performed well (Nitzschia closterium, Chlorella vulgaris and Dunaliella tertiolecta) and will be used in further test optimisation experiments. In addition to sensitivity, response time was evaluated and revealed a high degree of variation between species and toxicants. While most species displayed relatively weak and slow responses to copper, C. vulgaris demonstrated an IC10 of 51 μ g L-1, with maximum response measured within 25 minutes and inhibition being accompanied by a large decrease in fluorescence yield. The potential for this C vulgaris-based bioassay to be used for the detection of copper is discussed. There was no evidence that the standard ToxY-PAM protocol, using these unicellular algae species, could be used for the detection of chlorpyrifos or nonylphenol ethoxylate at environmentally relevant levels. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freshwater is extremely precious; but even more precious than freshwater is clean freshwater. From the time that 2/3 of our planet is covered in water, we have contaminated our globe with chemicals that have been used by industrial activities over the last century in a unprecedented way causing harm to humans and wildlife. We have to adopt a new scientific mindset in order to face this problem so to protect this important resource. The Water Framework Directive (European Parliament and the Council, 2000) is a milestone legislative document that transformed the way that water quality monitoring is undertaken across all Member States by introducing the Ecological and Chemical Status. A “good or higher” Ecological Status is expected to be achieved for all waterbodies in Europe by 2015. Yet, most of the European waterbodies, which are determined to be at risk, or of moderate to bad quality, further information will be required so that adequate remediation strategies can be implemented. To date, water quality evaluation is based on five biological components (phytoplankton, macrophytes and benthic algae, macroinvertebrates and fishes) and various hydromorphological and physicochemical elements. The evaluation of the chemical status is principally based on 33 priority substances and on 12 xenobiotics, considered as dangerous for the environment. This approach takes into account only a part of the numerous xenobiotics that can be present in surface waters and could not evidence all the possible causes of ecotoxicological stress that can act in a water section. The mixtures of toxic chemicals may constitute an ecological risk not predictable on the basis of the single component concentration. To improve water quality, sources of contamination and causes of ecological alterations need to be identified. On the other hand, the analysis of the community structure, which is the result of multiple processes, including hydrological constrains and physico-chemical stress, give back only a “photograph” of the actual status of a site without revealing causes and sources of the perturbation. A multidisciplinary approach, able to integrate the information obtained by different methods, such as community structure analysis and eco-genotoxicological studies, could help overcome some of the difficulties in properly identifying the different causes of stress in risk assessment. In synthesis, the river ecological status is the result of a combination of multiple pressures that, for management purposes and quality improvement, have to be disentangled from each other. To reduce actual uncertainty in risk assessment, methods that establish quantitative links between levels of contamination and community alterations are needed. The analysis of macrobenthic invertebrate community structure has been widely used to identify sites subjected to perturbation. Trait-based descriptors of community structure constitute a useful method in ecological risk assessment. The diagnostic capacity of freshwater biomonitoring could be improved by chronic sublethal toxicity testing of water and sediment samples. Requiring an exposure time that covers most of the species’ life cycle, chronic toxicity tests are able to reveal negative effects on life-history traits at contaminant concentrations well below the acute toxicity level. Furthermore, the responses of high-level endpoints (growth, fecundity, mortality) can be integrated in order to evaluate the impact on population’s dynamics, a highly relevant endpoint from the ecological point of view. To gain more accurate information about potential causes and consequences of environmental contamination, the evaluation of adverse effects at physiological, biochemical and genetic level is also needed. The use of different biomarkers and toxicity tests can give information about the sub-lethal and toxic load of environmental compartments. Biomarkers give essential information about the exposure to toxicants, such as endocrine disruptor compounds and genotoxic substances whose negative effects cannot be evidenced by using only high-level toxicological endpoints. The increasing presence of genotoxic pollutants in the environment has caused concern regarding the potential harmful effects of xenobiotics on human health, and interest on the development of new and more sensitive methods for the assessment of mutagenic and cancerogenic risk. Within the WFD, biomarkers and bioassays are regarded as important tools to gain lines of evidence for cause-effect relationship in ecological quality assessment. Despite the scientific community clearly addresses the advantages and necessity of an ecotoxicological approach within the ecological quality assessment, a recent review reports that, more than one decade after the publication of the WFD, only few studies have attempted to integrate ecological water status assessment and biological methods (namely biomarkers or bioassays). None of the fifteen reviewed studies included both biomarkers and bioassays. The integrated approach developed in this PhD Thesis comprises a set of laboratory bioassays (Daphnia magna acute and chronic toxicity tests, Comet Assay and FPG-Comet) newly-developed, modified tacking a cue from standardized existing protocols or applied for freshwater quality testing (ecotoxicological, genotoxicological and toxicogenomic assays), coupled with field investigations on macrobenthic community structures (SPEAR and EBI indexes). Together with the development of new bioassays with Daphnia magna, the feasibility of eco-genotoxicological testing of freshwater and sediment quality with Heterocypris incongruens was evaluated (Comet Assay and a protocol for chronic toxicity). However, the Comet Assay, although standardized, was not applied to freshwater samples due to the lack of sensitivity of this species observed after 24h of exposure to relatively high (and not environmentally relevant) concentrations of reference genotoxicants. Furthermore, this species demonstrated to be unsuitable also for chronic toxicity testing due to the difficult evaluation of fecundity as sub-lethal endpoint of exposure and complications due to its biology and behaviour. The study was applied to a pilot hydrographic sub-Basin, by selecting section subjected to different levels of anthropogenic pressure: this allowed us to establish the reference conditions, to select the most significant endpoints and to evaluate the coherence of the responses of the different lines of evidence (alteration of community structure, eco-genotoxicological responses, alteration of gene expression profiles) and, finally, the diagnostic capacity of the monitoring strategy. Significant correlations were found between the genotoxicological parameter Tail Intensity % (TI%) and macrobenthic community descriptors SPEAR (p<0.001) and EBI (p<0.05), between the genotoxicological parameter describing DNA oxidative stress (ΔTI%) and mean levels of nitrates (p<0.01) and between reproductive impairment (Failed Development % from D. magna chronic bioassays) and TI% (p<0.001) as well as EBI (p<0.001). While correlation among parameters demonstrates a general coherence in the response to increasing impacts, the concomitant ability of each single endpoint to be responsive to specific sources of stress is at the basis of the diagnostic capacity of the integrated approach as demonstrated by stations presenting a mismatch among the different lines of evidence. The chosen set of bioassays, as well as the selected endpoints, are not providing redundant indications on the water quality status but, on the contrary, are contributing with complementary pieces of information about the several stressors that insist simultaneously on a waterbody section providing this monitoring strategy with a solid diagnostic capacity. Our approach should provide opportunities for the integration of biological effects into monitoring programmes for surface water, especially in investigative monitoring. Moreover, it should provide a more realistic assessment of impact and exposure of aquatic organisms to contaminants. Finally this approach should provide an evaluation of drivers of change in biodiversity and its causalities on ecosystem function/services provision, that is the direct and indirect contributions to human well-being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and / or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. Results: The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Conclusions: Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems.