939 resultados para Water flow
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
cover-title,
Resumo:
Prepared 1933/34-1940/41 in cooperation with the United States Geological Survey.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.
Resumo:
Acoustic velocity meter (AVM) sites, located both distant and adjacent to canal water control structures, were constructed and calibrated in L-31W borrow canal and Canal 111 (C-111) to measure canal water velocity. Data were used to compute monthly discharge volumes and overall water budgets for several canal reaches from August 1994 to May 1996. The water budgets indicated extensive aquifer inflows in L-31W associated, in part, with S-332 pump station return flows. Canal and groundwater piezometer data showed 5 distinct hydrologic scenarios (distinguished by the direction and magnitude of hydraulic gradients) in the important Frog Pond area on the eastern boundary of the Everglades National Park. Most of the water lost from C-111 was via surface water losses near the outlet of the system, close to Florida Bay. The distribution of flows during the study suggest an alteration of the present South Dade Conveyance System modification plan to improve water deliveries to Taylor Slough and the Eastern Panhandle of the Everglades National Park. ^
Resumo:
In topographically flat wetlands, where shallow water table and conductive soil may develop as a result of wet and dry seasons, the connection between surface water and groundwater is not only present, but perhaps the key factor dominating the magnitude and direction of water flux. Due to their complex characteristics, modeling waterflow through wetlands using more realistic process formulations (integrated surface-ground water and vegetative resistance) is an actual necessity. This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%. The coupling of FLO-2D model with MODFLOW-2005 model and the incorporation of the dynamic effect of flow resistance due to vegetation performed in the new modeling tool WHIMFLO-2D is an important contribution to the field of numerical modeling of hydrologic flow in wetlands.