958 resultados para Wasted waters
Resumo:
Nitrogen flows from European watersheds to coastal marine waters Executive summary Nature of the problem • Most regional watersheds in Europe constitute managed human territories importing large amounts of new reactive nitrogen. • As a consequence, groundwater, surface freshwater and coastal seawater are undergoing severe nitrogen contamination and/or eutrophication problems. Approaches • A comprehensive evaluation of net anthropogenic inputs of reactive nitrogen (NANI) through atmospheric deposition, crop N fixation,fertiliser use and import of food and feed has been carried out for all European watersheds. A database on N, P and Si fluxes delivered at the basin outlets has been assembled. • A number of modelling approaches based on either statistical regression analysis or mechanistic description of the processes involved in nitrogen transfer and transformations have been developed for relating N inputs to watersheds to outputs into coastal marine ecosystems. Key findings/state of knowledge • Throughout Europe, NANI represents 3700 kgN/km2/yr (range, 0–8400 depending on the watershed), i.e. five times the background rate of natural N2 fixation. • A mean of approximately 78% of NANI does not reach the basin outlet, but instead is stored (in soils, sediments or ground water) or eliminated to the atmosphere as reactive N forms or as N2. • N delivery to the European marine coastal zone totals 810 kgN/km2/yr (range, 200–4000 depending on the watershed), about four times the natural background. In areas of limited availability of silica, these inputs cause harmful algal blooms. Major uncertainties/challenges • The exact dimension of anthropogenic N inputs to watersheds is still imperfectly known and requires pursuing monitoring programmes and data integration at the international level. • The exact nature of ‘retention’ processes, which potentially represent a major management lever for reducing N contamination of water resources, is still poorly understood. • Coastal marine eutrophication depends to a large degree on local morphological and hydrographic conditions as well as on estuarine processes, which are also imperfectly known. Recommendations • Better control and management of the nitrogen cascade at the watershed scale is required to reduce N contamination of ground- and surface water, as well as coastal eutrophication. • In spite of the potential of these management measures, there is no choice at the European scale but to reduce the primary inputs of reactive nitrogen to watersheds, through changes in agriculture, human diet and other N flows related to human activity.
Resumo:
This paper reviews the ways that quality can be assessed in standing waters, a subject that has hitherto attracted little attention but which is now a legal requirement in Europe. It describes a scheme for the assessment and monitoring of water and ecological quality in standing waters greater than about I ha in area in England & Wales although it is generally relevant to North-west Europe. Thirteen hydrological, chemical and biological variables are used to characterise the standing water body in any current sampling. These are lake volume, maximum depth, onductivity, Secchi disc transparency, pH, total alkalinity, calcium ion concentration, total N concentration,winter total oxidised inorganic nitrogen (effectively nitrate) concentration, total P concentration, potential maximum chlorophyll a concentration, a score based on the nature of the submerged and emergent plant community, and the presence or absence of a fish community. Inter alia these variables are key indicators of the state of eutrophication, acidification, salinisation and infilling of a water body.
Resumo:
Limnologists had an early preoccupation with lake classification. It gave a necessary structure to the many chemical and biological observations that were beginning to form the basis of one of the earliest truly environmental sciences. August Thienemann was the doyen of such classifiers and his concept with Einar Naumann of oligotrophic and eutrophic lakes remains central to the world-view that limnologists still have. Classification fell into disrepute, however, as it became clear that there would always be lakes that deviated from the prescriptions that the classifiers made for them. Continua became the de rigeur concept and lakes were seen as varying along many chemical, biological and geographic axes. Modern limnologists are comfortable with this concept. That all lakes are different guarantees an indefinite future for limnological research. For those who manage lakes and the landscapes in which they are set, however, it is not very useful. There may be as many as 300000 standing water bodies in England and Wales alone and maybe as many again in Scotland. More than 80 000 are sizable (> 1 ha). Some classification scheme to cope with these numbers is needed and, as human impacts on them increase, a system of assessing and monitoring change must be built into such a scheme. Although ways of classifying and monitoring running waters are well developed in the UK, the same is not true of standing waters. Sufficient understanding of what determines the nature and functioning of lakes exists to create a system which has intellectual credibility as well as practical usefulness. This paper outlines the thinking behind a system which will be workable on a north European basis and presents some early results.
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
Careful examination of the probable natural conditions for travel in the North Sea and Irish Sea during the late Mesolithic are here combined with the latest radiocarbon dates to present a new picture of the transition to the Neolithic in the British Isles. The islands of the west were already connected by Mesolithic traffic and did not all go Neolithic at the same time. The introduction of the Neolithic package neither depended on seaborne incomers nor on proximity to the continent. More interesting forces were probably operating on an already busy seaway.
Resumo:
Total phosphorus (TP) and soluble reactive phosphorus (SRP) loads to watercourses of the River Basin Districts (RBDs) of Great Britain (GB) were estimated using inventories of industrial P loads and estimates of P loads from sewage treatment works and diffuse P loads calculated using region-specific export coefficients for particular land cover classes combined with census data for agricultural stocking densities and human populations. The TP load to GB waters was estimated to be 60 kt yr(-1), of which households contributed 73, agriculture contributed 20, industry contributed 3, and 4 came from background sources. The SRP load to GB waters was estimated to be 47 kt yr(-1), of which households contributed 78, agriculture contributed 13, industry contributed 4, and 6 came from background Sources. The 'average' area-normalized TP and SRP loads to GB waters approximated 2.4 kg ha(-1) yr(-1) and 1.8 kg ha(-1) yr(-1), respectively. A consideration of uncertainties in the data contributing to these estimates suggested that the TP load to GB waters might lie between 33 and 68 kt yr(-1), with agriculture contributing between 10 and 28 of the TP load. These estimates are consistent with recent appraisals of annual TP and SRP loads to GB coastal waters and area-normalized TP loads from their catchments. Estimates of the contributions of RBDs to these P loads were consistent with the geographical distribution of P concentrations in GB rivers and recent assessments of surface waters at risk from P Pollution.
Resumo:
Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less dry than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, wet runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.
Resumo:
Activity concentrations of dissolved U-234, U-238, Ra-226 and Ra-228 were determined in ground waters fromtwo deep wells drilled in Morungaba Granitoids (Southern Brazil). Sampling was done monthly for little longer than 1 year. Significant disequilibrium between U-238, U-234 and Ra-226 were observed in all samples. The variation of U-238 and U-234 activity concentrations and U-234/U-238 activity ratios is related to seasonal changes. Although the distance between the two wells is short (about 900m), systematic differences of activity concentrations of U isotopes, as well as of U-234/U-238, Ra-226/U-234 and Ra-228/Ra-226 activity ratios were noticed, indicating distinct host rock-water interactions. Slightly acidic ground water percolation through heterogeneous host rock, associated with different recharge processes, may explain uranium and radium isotope behavior. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Four strains of Kappaphycus alvarezii were cultivated in the subtropical waters of Florianopolis, Santa Catarina State, Brazil (27 degrees 29`19 `` S/48 degrees 32` 28 `` W), from February 2009 to February 2010. Seaweeds were cultivated on floating raft near of mussel farms. Salinity ranged from 29 to 36 psu and temperature from 17.1 to 28.5 degrees C. Higher growth rates (5.12-4.29% day(-1)) were measured in summer and autumn, showing a positive correlation between growth rate and water temperature. Lower growth rates (0.54-0.32% day(-1)) occurred in winter, resulted mainly by biomass loss. Significant differences were observed among the strains in spring and the brown tetrasporophytic strain was the only one which failed to recover, being excluded of the experiments. The effect of cultivation periods (36, 42, and 97 days) on carrageenan yield, gel strength, and viscosity were analyzed. Carrageenan yields were higher for plants kept 42 days in the sea (28%), against 25% for 36 and 97 days. There were no significant differences in carrageenan yield among the strains analyzed. Viscosity increased with the increase of cultivation period, while gel strength seemed to vary at random. Tetrasporangia and cystocarps were not observed, and lost fragments did not attach outside the raft. In general, dissolved inorganic nitrogen concentration decreased around the cultivation area as compared to the mussel farm. Results show that cultivation of K. alvarezii is technically feasible in subtropical waters and can be associated with local mussel farms, mitigating the eutrophication and, eventually, increasing the economic return of the farmers.
Resumo:
The carrageenophyte Kappaphycus alvarezii was introduced in 1995 and vegetatively propagated in Ubatuba, Sao Paulo State, Brazil, for the purpose of commercial cultivation. This species produces tetraspores mainly in the austral summer and fall. Tetraspore germination and survival were studied under different conditions of temperature, photon flux density, and photoperiod in the laboratory. Field experiments were also carried out. Although tetraspores of K. alvarezii germinated, they had low survival rates, most dying after 20 days. Recruitment of K. alvarezii tetraspores did not occur in experiments conducted in the field. The results indicated that the establishment of K. alvarezii via spore production in the natural environment of the south-east coast of Brazil is rather remote.
Resumo:
The southern right whale (Eubalaena australis) was one of the most intensively hunted whales between the 17th and 20th centuries in the southern hemisphere. Recent estimates indicate that today there are around 7000 whales, representing 5 to 10% Of its original population. On the other hand, recent studies estimated that the population that migrates to the Brazilian coast grew by 14% from 1987 to 2003. However, there is no information about sex-ratio for adults or for calves in this region, which is an important parameter for understanding the biology of the species. We present here the first estimate Of calves` sex-ratio of southern right whales found along the southern Brazilian coast, one of the most important wintering grounds for the species. Sex was molecularly indentified for 21 biopsies collected from calves between 1998 and 2002, along the coast of Rio Grande do Sul and Santa Catarina States, in southern Brazil. The sex-ratio was two females for one male, however, it was not statistically different (chi(2) test, alpha = 0.05; df = 1) from the expected ratio of 1:1. This result is in accordance with the sex-ratio estimated for the species of all ages using external morphology (and behaviour in formation), (is well as for most species of baleen whales.
Resumo:
The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.